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Abstract

This thesis investigates the conformations formed by single chain asymmetric block
copolymers placed in poor solvents. The investigation is performed using self con-
sistent field theoretic computer simulations developed by the author. A theoretical
free energy model of the block copolymer system is also developed. The simula-
tions and free energy model show that the general conformation formed is that of
a sphere of the larger species surrounded by various surface domains of the smaller
species. The number of these surface domains is predicted by the free energy
model and compared to the results of the simulations. The model and simulations
are found to agree well for the majority of cases, and best for highly asymmetric
polymer chains.

The major impact of this research is a complete understanding of the asymmet-
ric copolymer system. An accurate set of simulations have been carried out and a
detailed model which agrees with these simulations has been constructed. These
results have direct applications in nano-science, specifically for patchy colloids.
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Chapter 1

Introduction

Polymers

Polymers form a diverse range of materials and draw interest from a variety of
fields. Synthetic polymers have many applications as useful materials in plastics,
clothing and rubber [30]. Polymers have the potential to be used in nano-science
due to their ability to self assemble into nanometer scale structures [24, 29, 34]. A
large range of polymers exist inside living matter as structures such as DNA, RNA
and proteins. These biological polymers are the subject of much modern research
in existing unsolved problems such as protein folding [5, 4].

Figure 1.1: Different polymer architectures: a) linear, b) star, c) bottle brush and
d) network.

A polymer consists of a long chain of repeating structural units called monomers.
The chain can have a range of different architectures, from a simple linear chain

1



2 Chapter 1. Introduction

to the star, bottle brush, and polymer networks shown in figure 1.1.
Each monomer in the chain is typically made up of one or many molecules, such

as an ethylene molecule (C2H4) in the case of polyethylene. A homopolymer is a
polymer that only has one species of monomer while a copolymer (or heteropoly-
mer) consists of two (or more) monomer species. The different monomer species
can be arranged randomly along the chain or, in the case of a block copolymer, the
monomer species form repeating blocks (figure 1.2).

Figure 1.2: (left) A homopolymer and (right) a block copolymer containing blocks
of monomer types A and B.

Polymers are often dissolved in a solvent. The solvent consists of a large number
of smaller particles such as water molecules. The quality of the solvent is a measure
of how much the polymer prefers contact with the solvent as opposed to itself. In
a good solvent the polymer prefers being in contact with the solvent and hence
swells to increase solvent surface contact. In a poor solvent the polymer tends to
collapse into a more compact globule to minimize solvent surface contact.

Single chain block copolymers

This thesis investigates the properties of flexible single block copolymer chains in
poor solvents where the blocks of each species (A and B) have a constant number of
monomers. The polymer can form a large range of conformational shapes (referred
to as conformations) due to the interplay of a variety of effects. Overall, the
polymer prefers to form a compact spherical globule to minimize contact with the
solvent. In addition, the A and B portions of the polymer prefer to phase separate
and form individual domains to minimize A-B surface contact. However, the
polymer must also stay connected and the chain pays a high free energy penalty
for stretching. This stretching effect frustrates the formation of two simple A
and B domains inside a spherical globule. Instead the conformations formed are
typically highly contorted and are fragmented into many separate domains.

The main focus in this work is on asymmetric single block copolymer chains in
poor solvents, where the blocks of species A contain significantly less monomers
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Figure 1.3: (upper drawing) An asymmetric single copolymer chain. The amount
of asymmetry is measured by the block size ratio R = NA

NB
= LA

LB
. When placed

in a poor solvent, this polymer chain will collapse to form a compact globule with
some conformation (lower drawing and corresponding SCFT simulation image).
This thesis attempts to predict what conformations will be formed by various
polymer chain configurations and explain why these conformations are formed.

than the species B blocks (figure 1.3). The block size ratio R = NA
NB

, where NA

and NB are the number of monomers of species A and B, is an important factor
in determining the conformation into which the polymer collapses. Typically, as
the length of the A blocks gets smaller, the A species forms a number of separate
domains on the surface of an approximately spherical B domain. This thesis
attempts to explain the formation of this conformation and to predict the number
of surface A domains for a range of different conditions. The investigation involves
several different approaches. A theoretical free energy model is developed using
simple surface tension and stretching free energy terms. This model is compared to
the results of computer simulations performed on the system using self consistent
field theory (SCFT) [10, 19].
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Previous work and applications

Most modern research in polymer physics focuses on polymer melts which contain
many single polymer chains together without a solvent [19, 18, 22]. Polymer
melts have a fundamentally different structure to single polymer chains as the
domains formed contain parts of many different polymer chains. Clearly, the
study of polymer melts is of great importance to the materials industry and most
research focuses there, rather than on single polymer chains in dilute solutions.
Consequently, our understanding of polymer melts is more extensive than our
understanding of the more fundamental object of a single polymer chain. The
case of single chains is important from a theoretical point of view. It is also
of interest in biology in studies of the protein folding problem and in genetics
and DNA studies [5, 4, 23]. Single chain copolymers have possible applications
as separate structured nano-particles [24, 29, 34], and patchy colloids [36]. In
addition, there have been proposals to make microscopic memory devices from
single polymer chains [14].

The possibility of forming patchy colloid like particles from block copolymers
is particularly interesting. Patchy colloids are micrometer diameter size particles
which have a number of special sticky patches on their surface. These patches
give the colloidal particles interesting structural properties, such as the ability to
self-assemble into intricate structures. The work in this thesis indicates that there
could be the potential to form similar patchy particles from block copolymers. If
formed from block copolymers the patchy particles would have a smaller scale than
normal colloidal particles, being of the order of 10’s of nanometers.

Most previous research on single polymer chains has focused on the simple ho-
mopolymer case, investigating aspects such as single chain stretching [12, 1]. The
homopolymer case is now well understood [38], but the more complex copolymer
case has not been investigated thoroughly either theoretically or with simulations.
Some work has been done using monte carlo and molecular dynamics simulations
on symmetric block copolymers where the blocks of each species have the same
length [25]. Recently this symmetric case has also been investigated using SCFT
simulations [27]. This work has given a general understanding of the overall con-
formation formed by single chain symmetric block copolymers in poor solvents.
However, little work has been done on the conformations of asymmetric block
copolymers in poor solvents where the blocks of each species have different lengths.
This is the subject of this thesis.

Thesis outline

Chapter two gives an introduction to polymer physics, summarizing the important
ideas in the field. Concepts and formulas required for the subsequent chapters are
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Figure 1.4: Example copolymer conformations produced using the self consistent
field theory simulations.

outlined. The density field representation of a polymer on a lattice is introduced
along with the fundamental statistical quantity required for the simulations, the
propagator.

Chapter three develops a theoretical free energy model for the polymer systems
considered. The findings of this model are investigated and compared to an inverse
conformation model to explain the general conformation characteristics.

Chapter four outlines the SCFT simulation method including the relevant
mathematical basis. The method for solving the propagator equation is described
as well as the overall simulation process. Optimizations of the code are described
briefly.

Chapter five presents the results of the computer simulations and discuses
the general conformation trends. The simulation results are compared to the
theoretical model and an understanding of the polymer system is developed.

Chapter six concludes and reviews the work.
The derivation of the mathematical solution to the propagator equation is

presented in appendix one. Appendix two includes some of the calculations for
the free energy models considered in chapter three.
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Chapter 2

Background Theory

This chapter gives an overview of the physics of polymers, focusing mainly on
concepts and formulas required for subsequent chapters. An understanding of the
basic stretching and surface tension interactions existing in polymer systems is
vital if an accurate theoretical model is to be developed.

An overview of the density field representation of a polymer on a lattice is
given. This forms the mathematical basis from which the self consistent field
theory simulation method is derived.

2.1 Introduction to Polymer Physics

2.1.1 The ideal chain

The simplest way to describe a polymer chain is as an ideal chain. In an ideal chain
there are no interactions between the repeating structural units (monomers) along
the chain and hence the polymer acts as a random walk in space (figure 2.1). A
random walk is generated by starting at a particular point and randomly choosing
the direction in which to place the next segment. This completely random process
is repeated for each segment along the chain. Consequently, the segments are
uncorrelated with each other.

If the segment vectors between consecutive monomers are given by b1, b2 · · ·bN
and the segment length (or monomer size) is b, then the mean square end-to-end

7
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Figure 2.1: A random walk on a lattice. The starting and ending points are
indicated in red and the bond vectors b1 and bN in blue. The chain can turn
back on itself (green segments), as there are no correlations between consecutive
segments.

distance R0 of the ideal chain is given by:

R2
0 =

〈∣∣∣∣∣
N∑
n=1

bn

∣∣∣∣∣
2〉

=

〈
N∑

n=1,m=1

bn · bm

〉

As there are no interactions or correlations between different segments along the
chain, only the diagonal terms of the average are included so:

R2
0 =

〈
N∑
n=1

|bn|2
〉

= Nb2 (2.1)

This average square end-to-end distance gives a measure of the natural size of an
ideal chain.

Stretching an ideal chain

For long ideal chains where N is large, the end-to-end vector R = rN − r0 obeys
a gaussian probability distribution [6]:

P (R) =

(
3

2πNb2

)3/2

exp

(
− 3R2

2Nb2

)
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Given this distribution, the entropy of the ideal chain given a particular end-to-end
length R is [15]:

S(R) = kB ln (P (R))

= −3kBR
2

2R2
0

The Helmholtz free energy associated with a particular elongation length R can
be found given F = E−TS. The free energy is an important quantity in polymer
physics. The polymer will form the conformation that has the minimum free
energy.

For the ideal chain case there are no interactions so the energy E is a constant.
So up to an additive constant:

F (R) =
3kBT

2

R2

R2
0

(2.2)

This formula shows that when stretched, an ideal chain acts as a simple spring
with spring constant 3kBT

R2
0

. This formula is used in the theoretical free energy

model to quantify linear stretching within the collapsed polymer conformations.

Crushing an ideal chain

The scaling of the free energy of an ideal chain crushed into a sphere of radius R
can be found by the following argument.

Due to the absence of interactions, the polymer chain will perform a random
walk except when it comes close to the sphere wall. The chain is then restricted
to move away from the wall, halving the possible angle space of motion. Each
collision with the wall results in a free energy loss on the order of kBT . The total
free energy loss is then kBT times the number of wall collisions C:

F ∝ kBT × C

The polymer chain will random walk across the sphere in-between each collision
with the wall. The number of monomers Ns in each random walk segment between
collisions can be calculated:

R0 ≈ 2R

=⇒
√
Nsb2 ≈ 2R

=⇒ Ns ≈
4R2

b2
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Figure 2.2: An ideal polymer chain crushed into a sphere. The chain loses ∝ kBT
free energy in each collision with the sphere wall. In-between collisions the chain
performs a random walk of monomer length Ns.

If there are N total monomers, then the number of random walk segments,
equivalent to the number of collisions C is:

C ∝ N

Ns

∝ Nb2

R2

So the free energy of an ideal chain crushed into a sphere of radius R is:

F ∝ kBT
R2

0

R2
(2.3)

This formula will be used in section 4.3 as a simple check of the simulation
method.

2.1.2 Real chains

In real polymer chains there are long range interactions between monomers which
are not necessarily adjacent along the chain (figure 2.3). In an ideal chain two
monomers can exist in the same position (figure 2.1). In real chains this is clearly
not possible. This kind of interaction is termed steric repulsion. There are also
attractive Van der Walls forces between different monomers. The balance of these
attractive and repulsive forces determines whether the real polymer tends to swell
or contract relative to the ideal chain size. [17]
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Figure 2.3: A long range interaction existing in real chains and not in ideal chains.

Polymers are often dissolved in a solvent. The presence of the solvent heavily
influences the balance between attractive and repulsive long-range interactions.
The quality of the solvent can be described by the Flory interaction parameter χ.
χ < 1

2
is the good solvent regime, where the balance of interactions is such that

the polymer tends to swell from its ideal size. χ > 1
2

is the poor solvent regime,
where the polymer tends to collapse into a compact globule. The point χ = 1

2
is

termed the theta point and corresponds to a cancelation between the attractive
and repulsive long-range interactions. A polymer in a theta solvent acts almost as
an ideal chain. [3]

In this thesis only polymers in poor solvents are considered. Here the poly-
mer will collapse into a spherical globule with a density dependent on the solvent
quality χ. The resulting density is an important factor affecting the collapsed con-
formation. The density can be determined by minimizing the free energy (section
2.2.1).

2.1.3 Block copolymers

When blocks of a second species of polymer are introduced to the chain, additional
interactions become significant. There will be an interaction and hence a Flory
interaction parameter χAB between the two polymer species A and B. For the case
of interest where the polymer species form separate domains, this parameter will
be positive, indicating repulsion. The strength of the A-B interaction influences
the end conformation of the copolymer as a larger χAB will favor less contact
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between the two species.
It is possible that the two species have different interaction strengths with the

solvent. This can cause interesting conformations where one species surrounds the
other, to minimize the inner species surface contact with the solvent. This case
is not considered in this thesis and the interaction strength between both species
and the solvent is taken as χ.

2.2 The Density Field Representation

Polymer conformations can be represented by a density field on a lattice. This is
an important concept and is used throughout this thesis in both the theoretical
model and the computer simulations.

In the case of a homopolymer and a solvent, the polymer is described by a
density φ at every point in space (lattice site). This density is normalized to 1
and hence it is also termed the volume fraction of polymer. This implies that the
volume fraction of solvent at each site is φS = 1 − φ. The free energy associated
with a polymer density field system on a lattice has several contributions (units of
kBT are adopted throughout):

• Configurational entropy of the polymer, described by the partition function
Z. This is the entropy a polymer has by virtue of its random shape (fig-
ure 2.4). The term is evaluated by introducing a statistical function called
the propagator that ensures the density field describes a connected polymer
chain. See section 2.2.4.

• Polymer-solvent interaction energy, described by the interaction parameter
χ. This term is simply given by the overlap between φ and φS times χ for
each lattice site:

FPS|site = χφ(1− φ)

• Translational entropy of the solvent given by [38]:

FS|site = φS log φS = (1− φ) log (1− φ)

The total free energy is the sum of these terms.

2.2.1 Homopolymer volume fraction

A homopolymer in a poor solvent will collapse to form a sphere with some polymer
volume fraction φ. φ will be such that the total free energy is minimized. The
configurational entropy term does not depend directly on φ and hence can be
ignored for this exercise.
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Figure 2.4: A stretched polymer chain (left) has less possible chain arrangements
than a free polymer chain (right). The stretched chain has a lower configurational
entropy and hence a higher free energy relative to the free polymer chain. Single
possible chain arrangements are highlighted in blue.

If φ at a particular site is equal to 1 then the volume associated with that point
is set to be a monomer volume υ = 4

3
πb3. If the polymer contains N monomers

and forms a sphere of radius R, then since φ is the volume fraction of polymer, by
volume conservation:

4

3
πR3φ = υN =⇒ R3 =

b3N

φ
(2.4)

Hence the number of sites taken up by the polymer is given by:

sites =
4
3
πR3

υ
=
N

φ

And the free energy is:

F =
(
χφ(1− φ) + (1− φ) log (1− φ)

)N
φ

= χ(1− φ)N + (
1

φ
− 1) log (1− φ)N

Taking the derivative w.r.t φ and setting to zero to minimize the free energy gives:

χ+
1

φ2
log (1− φ) + (

1

φ
− 1)

1

1− φ
= 0

=⇒ χφ2 + φ+ log (1− φ) = 0
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Assuming a linear approximation to this equation (figure 2.5) between the values
of χ = 0.6 and χ = 0.8 gives the density of polymer within the sphere:

φ = 1.4(χ− 0.42) (2.5)

0.60 0.65 0.70 0.75 0.80
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Χ

Φ

Linear Fit

Implicit Solution

Figure 2.5: φ = 1.4(χ − 0.42) linear approximation to the solution of χφ2 + φ +
log (1− φ) = 0 within the range 0.6 < χ < 0.8.

The range of χ values is between 0.6 and 0.8 as these are physically reasonable
poor solvent values. For χ values below 0.6 the solvent becomes too much like a
good solvent and the low density of polymer causes problems in the simulations.
Similarly, for high χ the density of polymer gets too high and causes errors. (see
section 5.1)

2.2.2 Copolymers

When a second polymer species is introduced there are two density fields φA and
φB describing the two species, so the density of the solvent is φS = 1 − φA − φB.
The only additional free energy term is that of the interaction between species A
and B, which is of the same form as the polymer-solvent interaction:

FAB|site = χABφAφB

The polymer-solvent term is also split into an A interaction and a B interaction
(φχ = (φA + φB)χ). The total free energy is given by:

F = − logZ +

∫
V

[φS log(φS) + χ (φAφS + φBφS) + χABφAφB] dr (2.6)
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Where the integral is over all lattice sites. The polymer will settle into the confor-
mation with the lowest free energy. So at equilibrium ∂F

∂φA
and ∂F

∂φB
will be equal

to 0.

2.2.3 The mean potential

The task of the computer simulation method is to find the density fields φA and
φB such that the above expression for the free energy is minimized. In order to
make this problem tractable, a mean potential is introduced. As monomers of the
two different species have different interactions, there will be a mean potential felt
by an A monomer wA and a mean potential felt by a B monomer wB. These
mean potentials are introduced into the free energy formula (2.6) in the form of
additional terms:

Fw = −
∫
V

wAφA + wBφBdr

Given polymer densities φA and φB, the forms of wA and wB can be found by
carrying out the minimization of the free energy with respect to φA and φB. This
gives (see appendix 1 for derivation):

wA(r) = χ(1− 2φA − 2φB) + χABφB − log(1− φA − φB) (2.7)

and
wB(r) = χ(1− 2φA − 2φB) + χABφA − log(1− φA − φB) (2.8)

2.2.4 The propagator and partition function

General density fields φA and φB do not necessarily describe a connected polymer
chain. To return the connected polymeric nature to the density field, the statistical
partition function and propagator are introduced.

The partition function Z describing the conformational entropy of the polymer
can be built up from the individual forward and backward partition functions.
Given a chain starting point r0, the partition function describing the number of
chain arrangements or paths of length s monomer units that start at r0 and end
at some position r is denoted Q(r0, r, s) (see figure 2.6). This function is weighted
by the mean field according to how ‘acceptable’ each path is. Q(r0, r, s) satisfies
a modified diffusion equation (see Doi and Edwards [6] for derivation):

∂Q(r0, r, s)

∂s
=
b2

6
∇2Q(r0, r, s)− w(r, s)Q(r0, r, s)

With an initial condition Q(r0, r, 0) = δ(r − r0). w(r, s) is the mean potential
acting on the particular monomer s, so if monomer s is an A monomer then
w(r, s) = wA(r).
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Figure 2.6: The forward partition function Q(r0, r, s) effectively measures the
number of possible chain arrangements with monomer s at position r and the
first monomer at position r0 (first half of polymer chain in diagram). There is
similarly a backward partition function Q†(rN , r, s) measuring the possible chain
arrangements beginning at the end of the chain. These functions are also weighted
according to the mean field and polymer density field.

For a completely free polymer, the chain is allowed to begin at any point in
space, and hence the function of interest is the partition function integrated over
all starting positions, or the forward propagator (figure 2.7):

q(r, s) =

∫
V

Q(r0, r, s)dr0

This function now describes the number of paths starting at any point that reach
some position r in s monomer steps, weighted by the mean field. Clearly, this
function satisfies the same modified diffusion equation:

∂q(r, s)

∂s
=
b2

6
∇2q(r, s)− w(r, s)q(r, s) (2.9)

with initial condition q(r, 0) = 1.
There is a corresponding backward propagator q†(r, s), being the integrated

partition function beginning at the end of the chain (again at any point) and
reaching any point r in N − s monomer steps. This satisfies a similar diffusion
equation with the initial condition q†(r, N) = 1, where N is the final monomer of
the chain.

The forward and backward propagator functions can be simply multiplied to-
gether and integrated over all space to obtain the total partition function Z. In
simpler terms, the total number of conformations or paths available to the poly-
mer, is the number of paths from the beginning of the chain (q) multiplied by the
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Figure 2.7: The polymer chain is free and is allowed to begin and end anywhere,
so the forward and backward partition functions are integrated over start and end
positions to give the forward and backward propagators q(r, s) and q†(r, s). These
functions describe the total number of polymer arrangements that place monomer
s at position r.

number of paths from the end of the chain (q†):

Z =

∫
V

q(r, s)q†(r, s)dr

This integral is independent of the monomer step s considered. If the final
monomer N is chosen, then due to the initial condition q†(r, N) = 1:

Z =

∫
V

q(r, N)dr

2.2.5 Connecting the propagator and the polymer density

If the forward and backward propagators are known, a corresponding polymer
density can be obtained. The number of polymer chain states that have a particular
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monomer s at any position r is given by q(r, s)q†(r, s). Dividing by the total
partition function gives the probability of the sth monomer being at any point r:

p(r, s) =
q(r, s)q†(r, s)∫
q(r, N)dr

Hence the density field of that particular monomer can be obtained by multiplying
by the volume of the monomer υ:

φ(r, s) = υ
q(r, s)q†(r, s)∫
q(r, N)dr

Adding all these monomer density contributions together gives the density fields
φA and φB.

These formulas for the propagators and density fields form the theoretical and
mathematical basis for the self consistent field theory computer simulation method.
Chapter 4 describes the implementation of this mathematical basis into the simu-
lation method.



Chapter 3

Theoretical Free Energy Models

The preliminary results section below shows self consistent field theory (SCFT)
simulation images of several conformations formed by asymmetric block copoly-
mers in poor solvents. In general, the species with shorter blocks (species A) forms
a number of domains on the surface of a globule of the species with longer blocks
(species B). This chapter develops a theoretical free energy model that describes
this general conformation. The model is termed the lens model, since the surface
A domains are similar to lenses. The lens model provides a theoretical prediction
of the number of A domains or lenses formed on the surface of the larger B sphere.

A second free energy model is developed describing the reverse conformation
of a small central A globule surrounded by the larger B species. A comparison
between this micelle model and the lens model explains why the smaller A species
always appears on the surface of the B globule and not in the center.

Figure 3.1: SCFT simulation images for polymer configurations: Left: N = 6000,
n = 16, R = 0.55, χ = 0.65, χAB = 0.25. Middle: N = 7000, n = 14, R = 0.45,
χ = 0.65, χAB = 0.3. Right: N = 8192, n = 16, R = 0.45, χ = 0.65, χAB = 0.25.

19



20 Chapter 3. Theoretical Free Energy Models

3.1 Preliminary Results

Figures 3.1 and 3.2 show SCFT simulation images (see chapter 4) of collapsed
asymmetric block copolymers in poor solvents. In all cases the smaller grey species
A forms domains on the surface of the larger yellow species B. The polymer
configurational parameters for each conformation are shown in the figure caption.
For highly asymmetric block copolymers where the block size ratio is small, the
total volume of the A species is small and the number of surface domains is in
general large. A simple theoretical free energy model is developed to explain the
formation of these conformations and their dependence on the polymer parameters.

Figure 3.2: SCFT simulation images for polymer configurations: Left: N = 9284,
n = 22, R = 0.25, χ = 0.7, χAB = 0.2. Middle: N = 9000, n = 18, R = 0.35,
χ = 0.65, χAB = 0.2. Right: N = 5520, n = 12, R = 0.3, χ = 0.7, χAB = 0.3.

3.2 Lens Model

A full theoretical description of the polymer systems is impossible. This thesis
develops a simplified model of the polymer system that predicts the general char-
acteristics.

The lens model consists of a sphere of species B in the middle with k lens
shaped species A domains on the sphere surface (figure 3.3). The density of the
sphere is taken as constant with the volume fraction of polymer φ given in section
2.2.1.

The bulk shape of the polymer is modeled as a sphere of constant size and
hence the free energy contribution due to the polymer-solvent surface interaction
at the surface of the sphere is a constant with respect to the number of lenses k.
For the purpose of predicting the number of lenses, the polymer-solvent interaction
term in the free energy can be ignored. The important factor in determining how
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Figure 3.3: Lens model of the collapsed polymer. The yellow region is that of
polymer species B and the grey species A forms k lenses on the surface

spherical the bulk polymer shape will be is the relative strengths of the A-B
interaction (χAB) and the polymer-solvent interaction (χ). A high χ indicates a
large repulsive force between the solvent and polymer, and hence the free energy
will be minimized by a conformation with minimum polymer-solvent contact, a
sphere. However, the interaction between A and B blocks forces the blocks apart,
creating elongated and distorted bulk shapes. In general, the polymer-solvent
interaction is significantly stronger than the A-B interaction so the bulk shape
is close to that of a sphere. This is confirmed in the majority of the simulation
results (section 5.3.1), and consequently the spherical approximation is justified.

The A lenses are assumed to be equal sized with the A monomers and blocks
equally distributed among them. This is a significant simplification of the system,
as for some cases it could be impossible to equally distribute the A blocks among
the lenses. This block distribution problem has been seen in the simulations, where
some conformations result from impossible distributions of blocks between the A
domains. (see section 5.5)

The two contributions to the free energy of the lens model are the surface
tension between species A and species B on the inner surfaces of the lenses, and
the chain stretching of the blocks in each species. The following sections give
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the formulas for these free energy contributions and explain the results. A full
derivation of the equations is given in appendix 2. Units of kBT are adopted
throughout.

3.2.1 Surface tension

The surface tension free energy is the simplest term to evaluate as it only depends
on the A-B interaction surface area and not specifically on the complex geometry
of the chains themselves. The expression for the free energy loss resulting from an
interface between two incompatible polymers was derived in 1971 by Helfand and
Tagami [13]:

Fsurf =

√
χAB

6
bρ0

This gives Fsurf per unit area, where ρ0 is the number density of monomers and b
is the monomer size. The bulk polymer sphere is of constant volume fraction φ,
so for any volume V within the sphere; φV = 4

3
πb3N , where N is the number of

monomers in the volume. As ρ0 = N
V

= 3φ
4πb3

, the total surface tension free energy
for an A-B interaction surface area A is:

FAB =
3

4π
√

6
χ

1/2
ABφ

A

b2
(3.1)

For the lens model with k lenses of radius x where the radius of the bulk sphere
is R, the total free energy resulting from A-B surface tension is given by (see
appendix 2):

FAB =
3

2
√

6
χ

1/2
ABkφ

(
1−

√
1− x2

R2

)
R2

b2
(3.2)

3.2.2 Chain stretching

The stretching and structure of the polymer chain inside a globule is in general very
complicated [16, 2]. Due to the poor solvent, the density of chain sections is quite
high and tangles can form, resulting in different sections of the chain stretching in
different ways. For the model, a simplified view is taken where each block inside
the polymer globule is treated as stretching in its own section of volume in a linear
manner. The ideal chain stretching equation 2.2 can be used. This simplification
of the stretching energy is expected to predict the general trend in the change of
the free energy with respect to the various parameters. The overall magnitude
of the stretching free energy term may not be well predicted by this model. This
magnitude can be corrected by using a fitting parameter determined by comparing
the model to the simulations.
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Species B stretching

To model the stretching of species B, each half B block is treated as stretching
away from its junction point with the neighboring A block on the surface of the
lens. The half B block is grafted to the lens surface and stretches into an expanding
cone shaped volume (figure 3.4).

Figure 3.4: Species B stretching model. Each half B block is modeled as stretching
into an expanding cone (red-dotted regions)

This is a simplified model of the physical stretching for several reasons. Firstly,
it is geometrically impossible to fit the cone shaped volumes into the globule with-
out overlap or left-over volume. This is ignored by setting the total cone volumers
such that the overall volume of the B polymer is conserved. As the cone expands
away from the lens, the main contribution to the stretching energy is from the por-
tion of the half block closest to the lens surface. What happens at the large end
of the cone, where these overlapping geometry effects originate, is less important.

Secondly, the outer ends of the half B blocks are not connected to the other
half of their block. Again, this does not make much difference as the majority of
the stretching energy comes from the portions near the lenses.

Finally, the final B block of the polymer chain is treated exactly the same as
the other B blocks. Since it is only connected to an A block at one end, the second
half of the block does not have a junction point and should not be anchored to a
lens. Providing the number of blocks is large, this inconsistency in the last block
becomes insignificant relative to the overall stretching energy.

The free energy resulting from stretching an ideal chain into a cone-shaped
volume can be evaluated by generalizing the linear chain stretching energy given
in the theory section (eq. (2.2)). This is done in appendix 2. Using the resulting
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equation to evaluate the total stretching in the B blocks gives (appendix 2):

FSB =
8b4NBR

4

9hφ2y4

(
R−3 − (R + h)−3

)
(3.3)

where NB is the total number of B monomers. The height of each cone h is given
by:

h = R

((
4b3NB

nφy2R
+ 1

)1/3

− 1

)
(3.4)

where n is the total number of blocks. The base radius of each cone y is:

y = R

√√√√2k

n

(
1−

√
1− x2

R2

)
(3.5)

Species A stretching

The stretching of each half A block within the lenses is modeled as linear stretching
into cylinders of equal height H (figure 3.5). The height of the cylinders is set by
volume conservation in species A, and hence the over and under estimation of the
heights of the cylinders is expected to cancel out.

Figure 3.5: Species A stretching model. Each half A block is modeled as stretching
in cylinders of equal height H (red-dotted regions)

Given that the A half blocks simply stretch in a linear manner, the ideal chain
linear equation can be used directly (eq. (2.2)) giving a total stretching free energy
in species A (see appendix 2):
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FSA =
8b4NA

3φ2y4
(3.6)

Adding the surface tension (eq. (3.2)), B stretching (eq. (3.3)) and A stretch-
ing (eq. (3.6)) equations gives the total free energy of the lens conformation. The
number of lenses k is a free variable, or correspondingly the lens size x. k is related
to x via (appendix 2):

NA

kN
= 1−

√
1− x2

R2

(
1 +

x2

2R2

)
(3.7)
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Figure 3.6: The surface tension, stretching and total free energy terms as a function
of lens size x for a typical set of parameters. R = 0.3, χ = 0.6, χAB = 0.2, n = 20,
N = 5000 and fitting parameter C = 2.2

3.2.3 Summary

The total lens free energy is minimized with respect to the lens size x. Figure
3.6 shows typical plots of the surface tension (FAB), stretching (FSA + FSB) and
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total free energy terms as a function of lens size x. The minimum occurs as a
result of the opposite trends of the surface tension and stretching terms. The five
parameters N , n, R, χ and χAB are enough to completely define the polymer chain
configuration, since the block size ratio R and N determine NA and NB.

Only an integer number of lenses is possible. Consequently, there is a discrete
set of possible lens sizes x. The free energy of each of these x values is calculated,
giving a corresponding minimum free energy lens number k by equation (3.7). The
lens model therefore gives a simple prediction of the number of A domains formed
for a particular asymmetric block copolymer chain.

As discussed in section 3.2.2, it is difficult to estimate the overall magnitude
of the stretching terms. A fitting parameter C is introduced to control this mag-
nitude. In section 5.4, the fitting parameter is determined by comparing the pre-
dictions of the model to the results of the simulations.

The following phase diagrams show the trends predicted by the model.
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Figure 3.7: A phase diagram showing the number of A domains as a function of
block size ratio and χAB. N = 5520, n = 12, χ = 0.7, C = 2.2.

Figure 3.7 shows the trend of number of A domains with respect to χAB and the
block size ratio R. As R decreases, the number of A domains increases. For small
block ratios, where the A blocks are quite short, a significant stretching free energy
penalty results if the A blocks combine into less lenses. The stretching terms
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overpower the surface tension term keeping the A species together to minimize
A-B surface area. The result is an increase in the number of A domains.

The phase diagram also shows that as χAB increases, the number of A domains
decreases. This is due to the increase in repulsion between the A and B species and
the increase in the surface tension free energy. The surface tension term overpowers
the stretching terms and the number of A lenses decreases to minimize A-B surface
area.
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Figure 3.8: A phase diagram showing the number of A domains as a function of
total monomer number N and χ. R = 0.4, n = 12, χAB = 0.15, C = 2.2.

Figure 3.8 shows the trend for number of A domains with respect to N and χ.
In order to gain an understanding of the trend, it is necessary to examine the free
energy equations given above. Eliminating constants and parameters that don’t
depend on χ and N , and noting that approximately:

y ∝ R, h ∝ R, NA ∝ N , NB ∝ N and R ∝
(
N
φ

)1/3

The stretching and surface tension contributions to the free energy become (equa-



28 Chapter 3. Theoretical Free Energy Models

tions (3.2), (3.3) and (3.6)):

FAB ∝ kφ

(
1−

√
1− x2

R2

)
R2 ≈ φR2 ∝ N2/3φ1/3

FSA + FSB ∝
N

φ2R4
+

N

Rφ2

(
R−3 − (R + h)−3

)
≈ 2N

φ2R4
∝ 1

N1/3φ2/3

From these relations, it can be seen that as N increases, the surface tension
increases. This is due to the overall size of the polymer increasing, meaning the
A-B interaction surface area also increases. The stretching energy correspondingly
decreases, because there are more monomers in each block and hence it costs less
energy to stretch them. The number of A domains then decreases with increasing
N , as the surface tension term begins to dominate.

As χ increases the polymer density φ increases. The surface tension free energy
also increases, because there is a higher density of monomers near the A-B inter-
action surface. The stretching energy decreases, because there are more monomers
in each block and it costs less energy to stretch them. So the number of A domains
decreases with increasing χ, as the surface tension dominates.

The final parameter n is a discrete parameter, as there must always be an inte-
ger number of blocks. As the block number increases the number of A domains in-
creases. Each individual block has less monomers and hence the stretching energy
increases, favoring more A domains. The block number also imposes a maximum
on the number of A domains formed, that of the number of A blocks (n

2
).

These general polymer conformation trends predicted by the model are repli-
cated by the simulation results (see chapter 5).

3.3 Micelle Model

The conformation modeled by the lens model, of a number of A domains on
the surface of a B sphere, is seen in the vast majority of simulations where the
polymer is highly asymmetric (see chapter 5). To explain this general conformation
characteristic, a second very different model referred to as the micelle model is
developed.

The lens type conformation modeled above differs from the conformation seen
in the case of a similarly asymmetric di-block copolymer melt. In the high den-
sity melt, the copolymers can assemble into micelle structures where the smaller
species forms a sphere in the center of the micelle. This is the inverse of the lens
conformation, as the smaller A species is in the center of the globule. [32, 20, 22]
(figure 3.9)

This difference in conformation between the melt and the single-chain case is
due to the following factors:
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Figure 3.9: A micelle structure formed inside a di-block copolymer melt. The A
blocks (solid lines) are shorter than the B blocks (balls), as in the case of the single
asymmetric block copolymer chains modeled in this thesis.

• Polymer connectivity: the melt consists of many different polymer chains
not connected, hence there are many free ends that don’t exist in the single
copolymer case.

• Poor solvent effect: in the polymer melt system, there is no explicit solvent.
Each polymer chain exists in an environment surrounded by identical neigh-
bors, and hence there is no tendency to collapse or become crushed. The
outer ends of the copolymers can expand into the surrounding space without
free energy penalty. The tendency of single chains in poor solvents to col-
lapse is the main reason why the single copolymer chain behaves differently
to the melt.

The free energy of the corresponding micelle structure for a single copolymer
chain in a poor solvent is calculated and compared to the lens model. In this
micelle model, the bulk structure of the polymer is again modeled as a sphere of
constant volume fraction φ. However, now the smaller species A forms a sphere in
the center of the larger species B. This comparison provides an insight into why
the smaller species in single chain asymmetric copolymers always appears on the
surface of the globule.
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As the bulk structure is still a sphere in the micelle model, the polymer-solvent
surface tension interaction is a constant and comparisons between this system and
the lens system can be made easily. Detailed calculations for the micelle model
can be found in appendix 2.

Figure 3.10: The micelle model. The smaller species A simply forms a sphere in
the center of the larger B sphere. The A stretching is similar to the A stretching
in the melt case as the chain ends lie close to each other (almost connected) in
the center of the sphere. Each B half block is modeled as stretching away from
species A in a cone (red-dotted regions).

3.3.1 Surface tension

The A-B surface tension free energy is given by (appendix 2):

FAB =
3√
6
χ

1/2
ABφ

1/3N
2/3
A (3.8)



Micelle-Lens Comparison 31

3.3.2 Species A stretching

The central species A stretching free energy is modeled as being similar to stretch-
ing in the melt micelle case. The species A polymer segments stretch inwards from
their junction points on the surface of the sphere so that their ends lie in the vicin-
ity of the sphere center. The ends are therefore close to being connected, as they
should be in the single chain case. (figure 3.10) The small species stretching inside
a micelle has been calculated by Semenov [32] and is given by:

FSA =
3π2

80
Q

R2
A

NMAb2

Where Q is the number of independent chains in the micelle. This is equivalent
to the number of species A half blocks (of length NMA) in the single chain case.
Hence the A stretching energy is:

FSA =
3π2

80

n

(NA/n)b2
b2N

2/3
A

φ2/3
=

3π2n2

80N
1/3
A φ2/3

(3.9)

3.3.3 Species B stretching

Stretching in species B is treated similarly to the lens case, with half blocks stretch-
ing away from their junction points on the surface of the A sphere into expanding
cones. This gives (appendix 2):

FSB =
2b4nNB

9φ2hR3
A

(
1−

(
1 +

h

RA

)−3
)

(3.10)

where

h = RA

((
b3NB

R3
A

+ 1

)1/3

− 1

)

Adding equations (3.8), (3.9) and (3.10) gives the total free energy for the mi-
celle model. The same fitting parameter C as that used in the lens model is used
to control the magnitude of the stretching free energy terms.

3.4 Micelle-Lens Comparison

The free energies obtained for the micelle model and the lens model were compared
for the entire parameter range considered in this thesis using a computer. It was
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found that the lens model had a lower free energy in nearly every case, explaining
why the simulations always produce conformations similar to the lens model.

The only extreme case found where the micelle model has a lower free energy
than the lens model is in the limit of high monomer number N (= 10000), high χ
(= 0.8), low ratio R (= 0.2), high block number n (= 24) and high χAB (= 0.3).
A plot of the different free energy terms of both the lens and micelle models as
a function of block size ratio in this extreme parameter range is shown in figure
3.11.
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Figure 3.11: A plot of the stretching, surface tension, and total free energy terms
for both the lens and micelle models as a function of block size ratio R. The upper
two lines are the total free energy for both models, the middle two lines are the
surface tension free energy terms and the lower two lines are the stretching free
energy terms. N = 10000, n = 24, χ = 0.8, χAB = 0.3 and C = 2.2. The sudden
jumps in the lens model surface tension and stretching energy are a result of a jump
from one integer number of lenses k to another. The region of interest is where
the total micelle free energy drops below the total lens free energy, indicating it is
the preferred conformation.

N , χ and χAB being large indicates that the polymer system is biasing towards
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a large surface tension and a small stretching energy, as shown in the plot. In
order for the micelle to have a lower free energy than the lens, the surface tension
term must dominate.

However, for the A-B surface area of the sphere in the micelle to be less than
the total A-B surface area of the lenses in the lens model, there must be many
lenses. The block size ratio must be small and the number of blocks large. Clearly,
if this goes too far, then the stretching energy of the micelle increases too much,
as can be seen in the steep rise of FMicelle for block size ratios less than 0.15.

It would be interesting to investigate this transition further and see if it is
possible to get a conformation similar to the micelle in the case of single chain
block copolymers in poor solvents. Unfortunately, it is very difficult to get the
simulations to converge in this extreme region of the parameter space (see section
5.1). If the simulation method could be improved further, then an investigation of
this transition could be possible.

The surface tension terms for the two models shown in figure 3.11 are directly
proportional to the amount of A-B surface area. This emphasizes an important as-
pect of this comparison. In the case of a liquid system (non-connected monomers)
of the same conformation as the micelle, the species A ball would never be located
in the center of the B sphere. Instead it would sit against the inner surface of the
sphere, effectively forming the lens model with k = 1. This would reduce the A-B
surface area without any other losses of free energy. In general, the strength of
the surface tension term is greater than that of the stretching terms. An example
can be seen in figure 3.6, where at the minimum, the FAB term is around twice
the FS term (despite the fitting parameter C doubling FS). This indicates that in
general it is more important that the A-B area is minimized. It becomes clear that
a conformation with the A species on the surface, which minimizes A-B contact
effectively for ‘free’, has a lower free energy.

These simple free energy models explain why the A species is nearly always
seen to form domains on the surface of the B sphere and not in the center. The
presence of the A species on the surface of the sphere minimizes the A-B surface
tension interaction.
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Chapter 4

Self Consistent Field Theory
Implementation and Method

This chapter gives a detailed description of the self consistent field theory (SCFT)
simulation method. This simulation method predicts the conformations formed
by single-chain asymmetric block copolymers in poor solvents. These predictions
can be compared to the theoretical free energy model developed in the previous
chapter and an understanding of the polymer system can be reached.

This chapter outlines the simulation process and gives the method used for
solving the propagator equation. Code optimizations are also described. The
simulation method is technically complex and only the main ideas are summarized
here. More information on the use of SCFT for simulation of polymer melts can
be found in references. [10, 19, 8, 28, 26]

As outlined in the theory section 2.2, SCFT is based on the density field repre-
sentation of the polymer. The density fields φA(r) and φB(r) denote the densities
of polymer species A and B at each lattice point, with the solvent density given
by φS = 1 − φA − φB. However, with the density field representation the notion
of a connected polymer is lost. This polymer connectedness is returned with the
statistical forward and backward propagators. This process is shown in figure 4.1.

The main technical steps in the method are:

1. Start with random initial density fields φA and φB

2. Calculate the mean potentials wA and wB generated by these density fields
(with equations (2.7) and (2.8))

3. Calculate the forward and backward propagators along the polymer chain
given the mean potentials using the propagator equation (eq (2.9)). (This
returns the connected polymeric nature to the density fields)

35
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4. Find new density fields via:

φ(r, s) = υ
q(r, s)q†(r, s)∫
q(r, N)dr

5. Use these new density fields in the first step

After many iterations the density fields generally converge to a fixed point where
the input density fields φA and φB of each iteration are very similar to the output
fields. The mean potentials become self consistent, leading to the name of the
simulation method.

Figure 4.1: The SCFT Iterative process: Starting with a polymer density field
(a), one iteration of SCFT propagates all possible chains through the density field
(b) and gives each a weighting factor. A weighted average is then performed over
all these possible chains (c) to give a new density field (d). The propagator steps
(b) and (c) ensure that the density fields φA and φB describe a connected polymer
chain.
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4.1 Simulation Process

Figure 4.2 shows a detailed flow chart of the processes and steps involved in the
method. There are two main loops, the iterative loop and the step loop. The
iterative loop describes the iterative procedure of approaching equilibrium by gen-
erating full new density fields via the propagator and mean potentials. The step
loop propagates the polymer through the mean potentials by solving the propaga-
tor equation at each step along the chain. The lattice box size used is 51×51×51
cubic units.

4.1.1 Initialization

The polymer densities φA and φB are initialized to random normalized fields within
a sphere of radius 2

3
rds the half box side length (25), centered in the lattice box.

The monomer size b is chosen such that the total polymer volume (υN) is an 80th
of the box volume, also setting the overall density normalization.

The forward and backward propagators q and q† are functions of position and
monomer step along the chain. 500 total steps are used along the polymer chain,
and hence each step does not necessarily correspond to one monomer. The number
of monomers per step, or step size ds, is not constant along the chain. A smaller
step size (i.e. more steps) is used inside the smaller A blocks as this is required to
converge to a solution. (see section 5.1)

The propagators are initialized as 1 at every point, in accordance with the
initial condition at each end of the chain in the propagator equation.

4.1.2 Iterative loop

Given input density fields φA and φB, one step of the iterative loop calculates
the mean potentials, solves the propagator equation and produces new density
fields. However, this is not split into distinct steps. If the entire propagator is
solved from the beginning of the chain to the end, without updating the density
and mean potentials along the way, then the density can grow too large at some
points. The density information does not feedback to the propagator quickly
enough. As a solution, the density contribution of each step is updated continually,
as the propagator is solved along the chain. This stabilizes the process; the mean
potentials now prevent large density accumulations from developing at any one
point.
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Figure 4.2: Flow diagram of simulation process showing the step loop and iterative
loop. q and q† are the forward and backward propagators, s is the current step,
It is the current iteration, φs is the density contribution of the sth step, φ is the
total density (φA and φB), Ts is the total steps and TIt is the total iterations.

Step loop

As shown in the flow diagram 4.2, given a particular step s, the step loop solves
for the forward propagator at step s + 1 and simultaneously for the backward



Simulation Process 39

propagator at step Ts − s− 1. Ts is the total number of steps, or the end step in
the chain. Using these propagator values, the step density contributions φs+1 and
φTst−s−1 are updated using the equation:

φ(r, s) = υ
q(r, s)q†(r, s)∫
q(r, N)dr

This equation involves both the forward and backward propagators at step s.
However, only q or q†, not both, are known at the current step. Hence the value
from the previous iteration is used for the unknown function q or q†. This is an
inevitable result of updating the density every step, but is actually advantageous,
since it helps to stabilize the simulations.

Once the step densities φs+1 and φTs−s−1 are updated, their contribution to the
total densities φA and φB are updated. The mean potentials wA and wB are then
recalculated from the new density fields, and used as the input fields for the next
step.

Data Output

Once the step loop for each iteration is completed, the final output density fields
φA and φB are recorded in a form that can be displayed using the molecular visu-
alization program UCSF Chimera [21]. The average and standard deviation of
each density field is calculated to give information about how close to convergence
the density fields are. The free energy of the conformation is also calculated (see
section 4.3).

The amount of mixing between the two species is found to test the phase sep-
aration of the polymer species. This is calculated through the mixing parameter:

M = 4

∫
φAφBdr∫

(φA + φB)2 dr

(see Pinson & Williams [27] for an investigation of phase separation behavior in
SCFT) This mixing parameter is used to differentiate between phase separated and
homogenous density fields. If M is small (less than about 0.3), then the polymer
species has not phase-separated and more iterations are required.

The simulation is run for up to 40 iterations to converge to a self consistent
solution. The production runs discussed in the results chapter run for 25 iterations.
The typical time length required at full resolution (513 lattice points and 500 steps)
for a run of 25 iterations is several hours, when run on a Linux computer cluster
at the Australian National University [31]. The main time consuming task is
calculating the solution to the propagator equation.
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4.2 Solving the Propagator Equation

The main task of the self consistent field theory simulations is to solve the propa-
gator equation:

∂q(r, s)

∂s
=
b2

6
∇2q(r, s)− w(r, s)q(r, s)

Where w(r, s) = wA if s is in an A block, and wB if s is in a B block. The derivation
of the solution to this equation is quite involved and is given in appendix 1. The
solution is:

q(r, s+ δs) = γ exp

(
δs
b2

6
∇2

)
q(r, s)

where γ = exp

(
−δs exp

(
δs

2

b2

6
∇2

)
w(r)

)
The exponential is calculated through:

exp

(
δs
b2

6
∇2

)
q(r, s) =

(
3

2πδsb2

)3/2 ∫
exp

(
−3|r − r ′|2

2b2δs

)
q(r ′, s)dr ′ (4.1)

And similarly for the exponential in the coefficient γ with δs→ δs
2

and q(r ′, s)→
w(r)

The gaussian integral in (4.1) could be calculated by simply summing the rele-
vant quantities over the entire lattice. However, this would be very time consuming
as the entire lattice must be integrated (r′) for every single point in the lattice (r)
(∝ 516 calculations per step). Clearly, due to the exponential factor, only points
inside a certain radius Rmax have a significant contribution to the integral and
need to be included.

In addition to this simplification, a randomized integration method is used to
sum the points within Rmax [27]. For each integer lattice radius from the middle
point (r), several points are randomly chosen to represent the contribution of all
points at this radius. Through appropriate normalization, these random points
approximate the entire discrete integral (see figure 4.3). The accuracy of this
approximation can be improved by increasing the number of random points taken
at each radius. It was found that 2 random points per lattice radius 1, 2 · · ·Rmax is
sufficient. This method drastically increases the speed of the simulations as only
2 points are summed at each radius R instead of on the order of R3 points.

This integral is performed for every point r within the box to give q(r, s). The
propagator is taken as 0 for points outside the box that should contribute to the
integral, since the polymer cannot be allowed outside the box. For the calculation
of the coefficient γ, the mean potential outside the box is taken as χ, as the polymer
density is 0.
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Figure 4.3: Calculation of the gaussian integral in equation (4.1) by a randomized
integration method. At each lattice radius 1, 2 · · · Rmax (red-dotted circles) two
random points (blue circles) are chosen and rounded to the nearest lattice site
(green points). The resulting sites are appropriately averaged to give the total
integral.

After the calculation for each step, the forward and backward propagators are
both normalized again to prevent large values developing. This does not effect the
simulation as the total partition function Z cancels the q normalization when the
new density fields are calculated.

4.3 Free Energy Calculation

In some cases during SCFT simulations it is possible for the polymer density fields
to become stuck in semi-stable configurations. [10] One solution to this problem
is to run the simulations many times from different random initial conditions and
average the results. [26] However, due to the long computation times, this is not
always possible. It is advantageous to calculate the free energy of a particular out-
put conformation. This allows the true equilibrium conformations to be identified,
as they will have a lower free energy than the semi-stable conformations.

The free energy of a particular density field can be calculated using equation
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2.6:

F = − log

(∫
V

q(r, N)dr

)
+

∫
V

[φS(log(φS)− 1) + χ (φAφS + φBφS) + χABφAφB] dr

The terms in the second integral can be calculated from the density fields φA
and φB. In order to calculate the conformational entropy term accurately, the
forward propagator is solved again for every step, without updating the density
continually. The magnitude of the term is then extracted from the re-normalization
factors applied to q after each step.

4.3.1 Simple simulation check

It is possible to check the simulation method and the free energy calculation by
performing simulations on the simple known case of an ideal chain homopolymer.
For an ideal chain there are no interactions and the mean potential w is set to zero.
By reducing the size of the simulation box, or equivalently increasing the size of
the polymer, the free energy of a crushed ideal chain can be measured. Equation
(2.3) gives the theoretical free energy of an ideal chain crushed into a sphere of
radius Rc:

F (Rc) ∝ kBT
R2

0

R2
c

The measured free energy should hence be proportional to R−2
c . This test was

performed on a range of chains with different natural sizes R0. The polymer was
allowed to reach equilibrium and the free energy measured for a range of small,
spherical lattice sizes.

The left plot of figure 4.4 shows the free energy as a function of crushing scale
Rg for polymers with a range of natural sizes R0 =

√
Nb2. The data points are

fit with a model F = aR−2
g , where a(R0) is some fitting coefficient. Clearly the fit

is very good. The upper right plot shows the R2 fitting goodness as a function of
the natural size. As the natural size increases, the fit becomes better indicating
that more highly crushed ideal chains obey the predicted law more closely. This
is expected for low crushing, as the polymer can fluctuate more and hence the
free energy calculation is not as accurate. The lower right plot shows the fitting
coefficient a of the model as a function of natural size. This fitting parameter is
proportional to R2

0, as expected from equation (2.3). These plots show that the
free energy calculation included in the simulation is accurate for the ideal chain
case, constituting a check of the simulation method and the free energy calculation.
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Figure 4.4: Crushing an ideal chain free energy test: the left plot shows the
measured free energy as a function of crushed radius of gyration for a range of
ideal chain natural sizes (R0 =

√
Nb2). The data is fitted with model F = a

R2
g
.

The R2 fitting goodness and the fitting coefficient a are plotted on the right for
each natural size. The coefficient a is fitted with a = 0.504R2

0 (R2 = 0.9998).

4.4 Simulation Stability

The simulation method is inherently unstable and the density fields do not converge
to equilibrium easily. There are problems with the density growing large at some
points and causing the simulation to crash. The free energy calculation introduced
above gives a measure of the simulation stability. As a function of iteration, the
free energy should decrease as the density fields approach equilibrium and then
reach a constant value at equilibrium. The following describe some of the methods
and calculations developed to improve the stability of the simulations.

4.4.1 ∆φ term

To increase the stability of the simulation, an artificial term is introduced to the
mean potential that counteracts changes to the density. This term is proportional
to the change in density from the previous step, and hence if the density changes
suddenly between steps, the mean potential acts to reverse or prevent more change.
The strength of the parameter is controlled by a ∆φ coefficient. Figure 4.5 shows
the free energy as a function of iteration for a range of ∆φ coefficients, for a
particular polymer configuration. Clearly when this coefficient is small or zero, the
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simulation is unstable. As the coefficient increases the simulations become more
stable and the free energy reaches an approximately constant value indicating the
equilibrium configuration has been reached.

5 10 15 20 25 30 35 40
700

710

720

730

740

750

Iteration

F
re

e
E

ne
rg

y
HkT

L

5 10 15 20 25 30 35 40
716
718
720
722
724
726
728
730

9
7
5
3
1
0

ó Φ Coefficient

Figure 4.5: Example ∆φ coefficient test showing the free energy as a function
of iteration number. The inset shows the higher coefficient graphs shifted apart
vertically for ease of viewing. (Polymer: N = 1890, n = 6, R = 0.4, χ = 0.7,
χAB = 0.2)

This additional ∆φ term in the mean potential is not a physical term and
can adversely affect the simulation. To be sure that the final equilibrium state
is correct, the ∆φ term should become insignificant relative to the other mean
potential terms. At equilibrium, the density is not changing, implying that the
∆φ term should be small. This was checked explicitly for a range of ∆φ coefficients
by measuring the maximum ratio of the ∆φ mean potential term to the total mean
potential.

The ∆φ coefficient for production runs is chosen to be 5, as this gives a stable
free energy while having only a small effect on the final equilibrium state. For this
coefficient, the maximum ratio of the ∆φ mean potential term to the total mean
potential reduced to less than 0.6% at equilibrium for the configuration in figure
4.5.

In figure 4.5, the free energy of the unstable runs (∆φ coefficient = 0 or 1) is
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lower than the free energy of the stable runs. This indicates that these unstable
runs are more correct, although clearly they are not at equilibrium. This problem
could be due to rapid changes in the density fields causing an inaccurate free
energy calculation. If there are large density gradients, then the calculation of
the propagator is less accurate due to the finite step size. It is probable that the
lower free energy of the unstable runs is an artifact of the finite step size in the
propagator calculation.

4.4.2 Other optimizations

Simple and Anderson mixing

Most SCFT simulations used in polymer physics do not continually update the
density as the propagator is calculated. Instead, a method of simple mixing is used
to stabilize the simulation. [8, 28] This involves calculating the mean potential
from a combination of the new and old (previous iteration) density fields. The
combination is heavily biased towards the old density fields and hence the mean
potential changes only slightly after each iteration, stabilizing the simulation.

This was attempted in these simulations but it was found that the method
discussed previously is more stable. It is possible that a more advanced version of
simple mixing, such as Anderson mixing [35] could provide a more stable simula-
tion.
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Chapter 5

Results and Analysis

This chapter presents the results of the self consistent field theory simulations.
These simulations provide a prediction of the conformations formed by asymmetric
block copolymers in poor solvents. The results are analyzed and compared to the
theoretical lens model. The results of the simulations and the model combine to
provide a good understanding of the polymer system and allow accurate predictions
of the conformations formed by physical asymmetric block copolymers in poor
solvents.

5.1 Convergence Range

Five parameters completely determine the copolymer chain, monomer number
N , polymer-solvent interaction strength χ, polymer-polymer interaction strength
χAB, number of blocks n and block size ratio R = NA

NB
. Reaching a stable and valid

polymer conformation using SCFT is only possible within certain ranges of these
parameters. Outside of these ranges, either the polymer density gets large quickly
and the simulation crashes, or the density does not collapse from an initial almost
homogenous state in a reasonable number of iterations. These non-convergence
and fast-convergence cases, and the parameter ranges in which they occur are
detailed in this section. Similar problems have been studied elsewhere. [11]

The key quantities that determine whether the simulations converge are χNA

and χNB. If there are relatively few monomers in a particular species, and χ is
small, then the ‘forces’ causing the polymer to collapse into a ball are small and
the convergence happens slowly. Correspondingly, if there are many monomers
and χ is high, the convergence forces are large causing large density accumulations
and crashing the simulation. These problems are exacerbated when the polymer
configuration is highly asymmetric with a small R. To make the shorter species A
blocks converge, χ must be high as NA is small. However this makes χNB large,

47
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often crashing the simulations. Hence there is a lower limit on the block size ratio.
Depending on the other parameters, it is difficult to simulate polymers with block
size ratios below 0.3 or 0.4. For these small block size ratios, only a small range
of χ values can be used. In simulation runs, χ values in the physically reasonable
range of 0.6 to 0.85 were attempted. Typically for small R, only one or two of
these values were successful.

To counter this uneven convergence, a smaller step size is used for the A blocks
while solving the propagator. The density is updated every step, so the A blocks
are updated more often, causing them to converge faster than the B blocks. This
method works quite well, although there is a limit to the difference in step sizes
possible between the A and B blocks. Typically, for the small ratio values of 0.3
and 0.4, the step size in the A blocks is chosen as a little more than half that in
the B blocks.

To produce an interesting conformation, the two polymer species must phase
separate. If χAB is too small, then the polymer acts as a homopolymer, forming a
homogenous ball. If χAB is too high, then the polymer species are forced apart vio-
lently, causing high density gradients between blocks and crashing the simulation.
The χAB range examined was 0.1 < χAB < 0.3.

Only conformations that appear stable over many iterations, and are suffi-
ciently converged, are judged as valid. This can be a subjective process, but in
general it is quite clear whether a particular result has converged. All borderline
cases are rejected.

Figure 5.1: Two final conformations resulting from the same polymer configuration
N = 7000, n = 14, R = 0.5, χ = 0.65, χAB = 0.15. The free energies averaged over
the last six stable iterations are: Fleft = 3831.58± 0.04 and Fright = 3831.39± 0.06
As the right conformation has a lower free energy, it is expected to be the true
equilibrium conformation.
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5.2 Reproducibility

In some cases, the conformations produced for the same polymer chain configu-
ration by different simulation runs (different random initial density fields) differ.
An example is shown in figure 5.1, with the free energies of the two conformations
given in the figure caption. These conformations are similar in A-B surface area
and total solvent-polymer surface area. The chain stretching energies for each
conformation are likely to be similar. The free energy of the ring and ball con-
formation on the right has a slightly lower value, so the other conformation could
be a non-equilibrium semi-stable configuration. Due to the similarity in the free
energies, it is not surprising that both conformations are produced by the simula-
tion. For cases such as this, the conformation with the lowest free energy is taken
as correct. So for this polymer chain configuration, the value of 2 A domains is
taken.

5.3 General Conformation Trends

5.3.1 Larger species centralized

Figure 5.2: Conformations for high ratio polymer configurations: the left con-
formation is produced by a symmetric copolymer with A and B blocks of the
same size (R = 1). The right is produced from a slightly asymmetric copolymer
(R = 0.95). (Other parameters: N = 5520, n = 12, χ = 0.65, χAB = 0.2)

The simulated polymer structures are characterized by a spherical ball of
species B with species A forming various domains on the surface. This trend
develops as the block size ratio decreases. Figure 5.2 shows conformations for
block size ratios of R = 1 and R = 0.95. When the A and B blocks are the same
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size, a symmetric conformation is formed. However, when the A blocks become
smaller, the B species immediately becomes centralized. The reason for this trend
is explained by the theoretical models. (section 3.4)

5.3.2 Parameter trends

The simulations are found to follow the trends predicted by the lens model. (section
3.2.3) The following example conformations show the trends as one parameter is
varied.

Block size ratio

Figure 5.3 shows a sequence of conformations with decreasing block size ratios for
otherwise the same polymer chain configuration as in figure 5.2. As the block size
ratio decreases, the conformations generally change so that more A domains are
formed on the surface, as predicted by the lens model.

Figure 5.3: Decreasing block size ratio. Top left to right: R = 0.85, 0.75, 0.65,
and bottom left to right: R = 0.55, 0.45 and 0.35. The number of A domains
generally increases as the ratio decreases. (Polymer configuration: N = 5520,
n = 12, χ = 0.65, χAB = 0.2)
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Trend with χ

Figure 5.4 shows a sequence of conformations with increasing χ values from left
to right. As predicted by the lens model, the number of A domains decreases as
χ increases. The increase in density with χ results in an increase in the surface
tension free energy. However, there is another factor not accounted for in the lens
model which also causes the number of A domains to decrease. As χ increases, the
bulk polymer shape becomes more like a sphere, and the A species can protrude
less off the surface of the B sphere. The A domains are forced to spread a little
on the surface, moving them closer to neighboring A domains. They can then
connect more easily, giving a lower number of surface A domains.

Figure 5.4: Increasing χ from left to right: χ = 0.65, 0.7 and 0.75. In general
the number of A domains decreases as χ increases, although this trend is not as
strong as in the block size ratio case. (Polymer configuration: N = 6000, n = 16,
R = 0.5, χAB = 0.2)

The trends with N , n and χAB are more difficult to show with examples. In
general these followed the predictions of the model. Figure 5.5 shows conformations
with an increasing number of A domains for a range of polymer configurations.
The clearest trend in these conformations is the increase in A domains with number
of blocks.

The configurations with low block number n (n = 4− 8) generally give similar
conformations for a large range of χ, χAB and R values. This is because the
number of A blocks heavily limits the number of A domains able to form. Most
simulations are done on systems with n above 12 and up to 24, as this gave more
interesting results.
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Figure 5.5: SCFT simulation images for conformations with different numbers of
A domains. The polymer configurations are given in Table 5.1.

Table 5.1: Polymer configuration parameters for Figure 5.5

Conformation Number of A domains N n R χ χAB

Top left 1 3840 8 0.4 0.75 0.25
Top middle 2 3840 8 0.4 0.7 0.3
Top right 3 5520 12 0.3 0.7 0.3
Bottom left 4 8192 16 0.3 0.7 0.3
Bottom middle 5 8600 20 0.25 0.7 0.25
Bottom right 6 9600 24 0.35 0.7 0.15

5.4 Comparison to the Lens Model

For each simulation run, the number of A domains is compared to the number
predicted by the lens model (chapter 3). As explained in section 5.1, only those
conformations that are judged to have reached equilibrium are included in the
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comparison. Figure 5.6 plots the number of A domains given by the simulations
(simulation value) on the x-axis against the decimal number of A domains pre-
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Figure 5.6: A domains shown in the simulations versus that predicted by the lens
model for the corresponding polymer chain configuration. The green line shows
the average at each simulation A domain number. The orange lines show the
1 σ confidence ranges (68% confidence). All valid simulation data is included.
Fitting constant = 2.2. The large spread is due mainly to long ring conformations
produced by the simulations that are not modeled well by the lens model.
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dicted by the lens model for the corresponding polymer chain configuration. The
decimal model prediction corresponds to the lens size x in the model such that
the free energy is a minimum. This is not converted to an integer lens number in
order to make the model-simulation comparison clearer.

If the number of A domains from the simulations and the model predictions
coincided, then the data would simply be a straight line of slope one. Clearly
this is not the case, there is a large spread in the model predicted values for each
simulation value. This spread is most pronounced for the simulation value of 1
A domain. Many of the simulations do not look like a series of lenses. Instead
a range of contorted rings and sausage like shapes are seen, as in figure 5.7 and
figure 5.3. The lens model does not model these kinds of conformations well.

Figure 5.7: Contorted ring conformations not similar to the lens model. Polymer
chains forming such conformations are not well modeled by the lens model.

To further test the model, simulation results containing these kinds of rings are
removed from the data set. This included any simulation results that contained
a long rail stretching more than a third of the way around the structure. The
resulting data set is shown in figure 5.8.

The fit is now better. In particular, most of the data points with a simulation
value of 1 A domain and a model prediction of more than 2 A domains have been
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Figure 5.8: A domains shown in the simulations versus that predicted by the
lens model for the corresponding polymer chain configuration. Conformations
clearly not modeled by the lens model are removed. The green line shows the
average at each simulation A domain number. The orange lines show the 1 σ
confidence ranges (68% confidence). Simulation results that contained a long rail
that stretched more than a third of the way round the sphere are not included.
Fitting constant = 2.2. The spread is now less than in figure 5.6, especially for
the simulation value of 1 A domain.
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removed. These removed simulations are contorted ring conformations similar to
the first conformation in figure 5.7. Some outliers from the higher simulation
values have also been removed. These conformations had a long ring or rail. The
lens model prediction would split such a rail or ring into two or more sections, and
a higher A domain prediction would result. The main parameter characteristic
of the polymer configurations resulting in these conformations is a relatively high
block size ratio of 0.5-0.7. This indicates that the lens model works well only for
the more asymmetric copolymers.

There is still a large spread, especially for the simulation value of 4 A domains.
Many of the remaining outliers are technically impossible conformations, given the
polymer chain configuration.

5.5 Result Validity

Some conformations produced by the simulations appear to be impossible. For
example, the 3-stack conformation shown in figure 5.9 has two equal sized A
surface balls. The volumes of the two A balls are almost equal: Vtop = 0.00354
and Vbot = 0.00397. (At surface density display level 0.15)

Figure 5.9: A 3-stack conformation N = 1890, n = 6, R = 0.4, χ = 0.7, χAB =
0.25 (surface density = 0.15). The two grey A species balls have the same size.
This should not be possible since there are only 3 A blocks.

This conformation cannot be physically possible when the configuration of
the polymer chain is considered. There are three species A blocks and hence a
physical polymer forming a 3-stack conformation must have different sized balls,
one containing two A blocks and the other one A block. The only way that the
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physical polymer can form a conformation where the balls are the same size is if
one of the A blocks stretches from the top ball to the bottom ball. This would
have a very large free-energy cost and is unlikely. There is no evidence of this
occurring in the simulation.

The existence of these impossible conformations is due to the statistical nature
of the SCFT simulations. The simulation works by propagating every possible
polymer chain starting at every possible point through space and giving each
possible chain state a weighting according to the mean potential (see figure 4.1).
A chain state that has an A block in a B-rich density region will be given a
small weighting. A polymer chain state with the A and B blocks in the correct
density regions will be given a large weighting. The polymer conformation is
then obtained by doing a weighted average over all the chain states, given their
particular weighting factor. The outputted conformations are therefore super-
positions of many chain arrangements. The 3-stack conformation could be due to
the super-position of polymer chain states having one, two or three blocks in the
upper ball with states of the opposite arrangement. (see figure 5.10)

Figure 5.10: Possible polymer chain states contributing to the density field of
the 3-stack. The grey blocks only propagate (with significant weighting) in the
grey density regions, so this figure shows all the possible arrangements of grey
blocks. Each individual chain state gives a conformation that is not symmetric
with respect to the upper and lower ball sizes. The sum of all sates is however
symmetric, with two equal sized A balls.

Figure 5.11 shows the density of blocks 1, 3 and 5 for the 3-stack simulation
result shown in figure 5.9. The density of each block is split into two sections,
which is clearly impossible for a physical polymer. The individual block density
conformations result from a superposition of chain states where the block is in
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Figure 5.11: Density fields of blocks 1, 3 and 5 for the 3-stack conformation shown
in Figure 5.9 (surface density = 0.05). Physically, it should be impossible for these
blocks to be split into two separate regions.

either the top or bottom ball.
Other examples of impossible conformations are shown in figure 5.12. The

correct physical polymer conformation cannot be extracted from these simulation
results simply by taking the most contributing chain state in the averaging process.
The superpositions of the other states directly affect the density field, and there
is no guarantee that the physical polymer chain would form such a conformation.

It is difficult to resolve this statistical issue, section 5.7 discusses some at-
tempted solutions.

Figure 5.12: (Left) An impossible 4-equal-ball conformation resulting from a 12
block polymer with only 6 A blocks. (Right) An impossible 6-equal-ball confor-
mation resulting from a 18 block polymer with only 9 A blocks

5.6 Model Comparison (Valid Conformations Only)

Any conformations known to be impossible, such as the 4-equal-ball and equal-3-
stack conformations shown above, are eliminated from the data. The results after
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this elimination are shown in figure 5.13.

0 2 4 6 8
0

2

4

6

8

Simulation A domains

M
od

el
A

do
m

ai
ns

Number of A Domains: Model Comparison

Figure 5.13: A domains shown in the simulations versus that predicted by the
lens model for the corresponding polymer chain configuration. Any conformations
known to be impossible are eliminated. The green line shows the average at each
simulation A domain number. The orange lines show the 1 σ confidence ranges
(68% confidence). Fitting constant = 2.2. The fit between the model and the
simulations now approximately describes a one-to-one relationship with error bars
±0.5.
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The correlation is now better. The average A domain line approximately de-
scribes a one-to-one relationship, after adjusting the fitting parameter within the
lens model to 2.2. The standard deviation is approximately 0.5 for most simulation
values. This is a small spread in light of the uncertainty sources in the comparison:

• The inaccuracies in the model, including the spherical assumption. (see
section 3.2)

• Some of the simulation results may be trapped in semi-stable conformations.
These are eliminated where possible by checking the free energy of identical
runs, but not every polymer chain was simulated more than once.

• The model can predict an impossible arrangement of blocks, with each lens
containing a non-integer number of blocks.

In conclusion, the lens model works well when impossible conformations and
conformations containing long rings are eliminated. Since the majority of the long
rings appear only for polymer chain configurations with high block size ratios,
the model predicts the conformations of highly asymmetric polymer configura-
tions well. The approximate fitting parameter that gives a one-to-one relationship
between the lens model and the simulation results is 2.2. This fitting parameter
controls the magnitude of the stretching terms in the lens model. So the stretching
energy is underestimated by the simple ideal chain stretching in the model by a
factor of 2.

The agreement between the simulations and the theoretical lens model for
highly asymmetric block copolymers in poor solvents show that an understanding
of the polymer system has been reached. The theoretical model explains why
many of these conformations are formed. Using both the simulations and model
it is now possible to accurately predict the conformations formed by asymmetric
block copolymers in poor solvents.

5.7 Possible Solutions to the Statistical Problem

5.7.1 Hard sphere

It is inherently difficult to stop impossible conformations from appearing in the
simulation results while still allowing the simulation to remain free of artificial
effects.

One possible solution is to introduce a hard sphere potential into the mean
potential. Physically, each A block should be localized in a relatively small region
due to the poor solvent and free energy penalty for stretching. So a potential
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acting on the block which is zero within a sphere (of radius Rs) surrounding the
block should not affect the physical polymer at all. If this potential is very large
outside of Rs, then the the block cannot have a density contribution outside the
sphere. The block is effectively forced into one of its possible locations (figure
5.11). The key point about this potential is that the block is still completely free
to move. It can move around inside the hard sphere potential and since the hard
sphere potential is centered on the blocks center of mass, the block is free to move
anywhere inside the lattice.

In practice, this method is difficult to implement. It does not work for the
higher ratio polymer configurations where the conformation has large contorted
rings containing many blocks. In this case each block expands within the rings
to fill the hard sphere radius, and hence the result is artificial, dependent on the
sphere radius.

For low block size ratio polymer configurations, the size of the sphere is difficult
to optimize. It has to be small to prevent blocks overlapping between different A
domains, but large enough not to affect the shape of the individual block. This
range is small, and heavily dependent on the polymer chain configuration. Hence
it is impractical to use this method as a solution.

5.7.2 A block interaction

Another possible solution is to introduce an interaction χbl between the different A
blocks. This interaction would serve to separate the blocks, meaning the individual
blocks would exist in one piece to minimize free energy. If the interaction is small
enough, it would have a very small effect on the actual conformation formed.

This is again difficult to implement. If χbl is too small, then the blocks do
not separate. If χbl is too large, then the simulation is just modeling a polymer
configuration where each A block is a different species. In the mid-range, it is
difficult to get the overall polymer density field to collapse. This option proved an
impractical solution to the problem.
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Figure 5.14: Sample SCFT polymer conformation images.



Chapter 6

Conclusion and Summary

This thesis investigated the properties of single asymmetric block copolymer chains
in poor solvents where the blocks of one species (A) are significantly shorter than
the blocks of the other species (B). In general, it was found that the polymer chain
collapses into an approximately spherical globule with species A forming a number
of surface domains surrounding a species B core.

A theoretical free energy model referred to as the lens model was developed to
predict the number of surface A domains formed for different chain configurations.
The model gave the trend of number of A domains under changes of the five
polymer configurational parameters: the number of monomersN , number of blocks
n, polymer-solvent interaction strength χ, polymer-polymer interaction strength
χAB and block size ratio R = NA

NB
. The model predicted a decrease in number of

A domains when N , χ, χAB and R increased, and an increase in A domains with
increasing n.

The lens model was compared to a very different model where species A forms
a sphere in the center of species B (the micelle model). The lens model gave a
lower free energy in the vast majority of cases, as in general it reduced the surface
tension free energy. In the extreme case of high monomer number, high χ, small
block size ratio, high number of blocks and high χAB, this comparison predicted
a possible inversion, where the micelle model became the model with a lower free
energy. It was not possible to run simulations in this extreme parameter range, but
if the simulation method could be improved, it would be interesting to investigate
this possible conformation inversion.

The copolymer systems were simulated using self consistent field theory. This
simulation method was optimized for use with single chain polymers, and the
stability was improved. A problem due to the statistical aspect of the method
was identified. Often the results produced were impossible, given the structure
of the polymer chain. This problem was difficult to solve as it is inherent to the
simulation method.
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Figure 6.1: Micro-structures formed from patchy colloid self-assembly. source [7]

The predictions of the lens model were compared to the SCFT simulation re-
sults. When impossible conformations and conformations resulting from weakly
asymmetric polymer chains were removed, the correspondence between model and
simulations was good. The fitting parameter used to fit the model to the simula-
tions indicated that the stretching energy in the model was underestimated by a
factor of 2.

The results presented in this thesis show that single chain block copolymers
can form a diverse range of conformations. For asymmetric block copolymers,
an understanding of the polymer system has been obtained. Given an asymmet-
ric block copolymer configuration, it is now possible to predict the conformation
formed when the polymer is placed in a poor solvent.

The investigation performed in this thesis shows the potential of block copoly-
mers to form patchy colloid like particles. Patchy colloids are small particles that
have surface patches or ‘sticky’ spots that can interact to form complex microm-
eter size structures. This thesis shows that asymmetric block copolymers in poor
solvents could be used as patchy colloid like particles, due to their tendency to
form small A domains on the surface of a B sphere. The A domains constitute
the patches on the colloids surface, and their number can now be determined from
the polymer configuration.

Patchy colloid like particles formed from block copolymers would have many
advantages over normal patchy colloids. Their size is significantly smaller (order
of 10’s of nanometers) allowing the construction of smaller nano-structures. Block
copolymers are easier to make, since they self-assemble when placed in the correct
environment. Their structures can also be controlled more easily by changing the
polymer configuration and environmental parameters such as temperature and
solvent quality, as shown in this thesis.
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6.1 Further Directions

The methods introduced in this thesis could be easily extended to investigate more
complex polymer configurations involving selective solvents, branch points, larger
numbers of species and chain stiffness.

The stretching of a polymer chain is another area that could be investigated
using SCFT. Computer simulations on polymer stretching have been performed
using Langevin dynamics and Monte Carlo simulation techniques [12, 9, 1]. How-
ever, SCFT has the ability to converge much more rapidly to the equilibrium
conformation of the stretched polymer. The simulations can also be performed
on much more complex polymer chains with different block numbers, sizes and
species.

As SCFT only finds the equilibrium conformation, no information on the dy-
namics of the polymer while it is being stretched can be extracted. However, due
to the free-energy calculation, the force applied to stretch the polymer at certain
stretching distances can be calculated.

A simple feasibility test was done by varying stretching lengths and running
the simulation on a 1890 monomer 6 block polymer chain. The results are shown
in figure 6.2.

6.2 Outcome Summary

The outcomes of this thesis were:

• The development of self consistent field theory simulations for use in simu-
lating single-chain polymers in poor solvents.

• The development of a simple free energy model able to predict the conforma-
tion formed by single asymmetric block copolymer chains in poor solvents.

• An understanding of the general conformation formed; The smaller species
forms surface domains surrounding a sphere of the larger species.

• The ability to predict the the number of surface domains formed for various
polymer configurations.

• The possibility for block copolymers to form patchy colloid like nano-particles,
and the ability to control their structure.
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Figure 6.2: A sequence of stretched 6 block polymers at stretching lengths 6,10,14
and 18. Configuration: χAB = 0.25, χ = 0.7, R = 0.4, N = 1890, n = 6.
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Chapter 7

Appendix 1: The Solution to the
Propagator Equation

7.1 Mean Field Formula

The formulas for the mean fields wA and wB are obtained by minimizing the free
energy in the density field representation with respect to φA and φB. The free
energy is (2.6):

F = − log

∫
V

q(r, N)dr +

∫
V

[φS log(φS) + χ (φAφS + φBφS) + χABφAφB] dr

Taking the derivative with respect to φA:

∂F

∂φA
=

∫
∂

∂φA

[
(1− φA − φB) log(1− φA − φB) + χφAφS

+ χφBφS + χABφAφB − wAφA − wBφB
]
dr

=

∫ [
− log(1− φA − φB) + 1− 1 + χ(1− 2φA − φB)− χφB

+ χABφB − wA
]
dr + C

=

∫ [
χ(1− 2φA) + (χAB − 2χ)φB − log(1− φA − φB)− wA

]
dr + C

So ignoring constants, setting to zero and rearranging:

wA(r) = χAS(1− 2φA) + (χAB − χAS − χBS)φB − log(1− φA − φB)

and similarly for wB:

wB(r) = χBS(1− 2φB) + (χAB − χAS − χBS)φA − log(1− φA − φB)
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7.2 Solving the Propagator Equation

Most of the computational effort in SCFT goes into solving the propagator equa-
tion:

∂q

∂s
(r, s) =

b2

6
∇2q(r, s)− w(r)q(r, s)

A formal solution can be obtained through:

∂q

∂s
(r, s) =

(
b2

6
∇2 − w(r)

)
q(r, s)

=⇒ 1

q
∂q =

(
b2

6
∇2 − w

)
∂s

=⇒
∫ q(r,s+δs)

q(r,s)

1

q
dq =

∫ s+δs

s

Âds

=⇒ log

(
q(r, s+ δs)

q(r, s)

)
= Âδs

=⇒ q(r, s+ δs) = eÂδsq(r, s)

So the formal solution is:

q(r, s+ δs) = exp

(
δsb2

6
∇2 − δsw

)
q(r, s)

In order to solve this equation, the exponentials need to be written in a more
convenient form. Setting A = b2

6
∇2, B = −w(r) and λ = δs the exponential

is now in the form eλ(A+B) where A and B are non-commuting operators. The
exponential needs to be separated into an A and a B part. Writing:

eλ(A+B) =
2∏

n=∞

eλ
nCneλBeλA (7.1)

(variation of the Zassenhaus Formula [33, 37]). So the coefficients Cn need to be
found to solve the differential equation. They can be defined as:

Cn =
1

n!

[
∂n

∂λn

(
eλ(A+B)e−λAe−λBe−λ

2C2 · · · e−λn−1Cn−1

)]
λ=0
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since substituting in (7.1) gives:

Cn =
1

n!

[
∂n

∂λn

(
2∏

m=∞

eλ
mCmeλBeλAe−λAe−λBe−λ

2C2 · · · e−λn−1Cn−1

)]
λ=0

=
1

n!

[
∂n

∂λn

(
n∏

m=∞

eλ
mCm

)]
λ=0

=
1

n!

[
n+1∏
m=∞

eλ
mCm

∂n

∂λn
(
eλ

nCn
)

+ · · ·

]
λ=0

=
1

n!

[
n+1∏
m=∞

eλ
mCm

(
eλ

nCnn!Cn
)

+ λ(· · ·) + λ2(· · ·) + · · ·

]
λ=0

= Cn

7.2.1 Finding the coefficients using the Wilcox method

Taking the derivative of both sides of Eq. (7.1) w.r.t λ gives:

eλ(A+B)(A+B) =
2∏

n=∞

eλ
nCneλBeλAA+

2∏
n=∞

eλ
nCneλBBeλA+

2∏
n=∞

eλ
nCn2λC2e

λBeλA+···

multiplying on the left by the reciprocal of (7.1); e−λ(A+B) = e−λAe−λB
∏∞

n=2 e
−λnCn

gives:

A+B = A+e−λABeλA+e−λAe−λB2λC2e
λBeλA+e−λAe−λBe−λ

2C23λ2C3e
λ2C2eλBeλA+···

=⇒ B = e−λABeλA+e−λAe−λB2λC2e
λBeλA+e−λAe−λBe−λ

2C23λ2C3e
λ2C2eλBeλA+···

(7.2)
Now since A = b2

6
∇2 and B = −w(r) then:

[A,B]f(r) =
b2

6
∇2(−w · f) + w · b

2

6
∇2f

= −f · b
2

6
∇2(w)− w · b

2

6
∇2(·f) + w · b

2

6
∇2f

= −b
2

6
∇2(w) · f = g(r) · f

=⇒ [A,B] = g(r)
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Also, from the explicit formulas for Cn above:

C2 =
1

2

[
∂2

∂λ2

(
eλ(A+B)e−λAe−λB

)]
λ=0

=
1

2

[
∂

∂λ

(
eλ(A+B)((A+B)e−λAe−λB − Ae−λAe−λB − e−λAe−λBB)

)]
λ=0

=
1

2

[
(A+B) (((A+B)− A−B)) +

(
(A+B)(−A−B)

− A(−A−B)− (−A−B)B
)]

=⇒ C2 =
1

2
[A,B]

C3 =
1

6

[
∂3

∂λ3

(
eλ(A+B)e−λAe−λBe−λ

2C2

)]
λ=0

=
1

6

[
∂3

∂λ3

(
eλ(A+B)e−λAe−λB

)
+

∂2

∂λ2

(
eλ(A+B)e−λAe−λB

)
(−2λC2)

+
∂

∂λ

(
eλ(A+B)e−λAe−λB

) (
−2C2 + 4λ2C2

2

)
+

∂

∂λ
(
(
−2C2 + 4λ2C2

2

)
e−λ

2C2)

]
λ=0

=
1

6

[
∂3

∂λ3

(
eλ(A+B)e−λAe−λB

)
+ ((A+B)− A−B) (−2C2)

]
λ=0

=
1

6

[
∂2

∂λ2

(
eλ(A+B)((A+B)e−λAe−λB − Ae−λAe−λB − e−λAe−λBB)

)]
λ=0

=
1

6

[
(A+B)

∂2

∂λ2

(
eλ(A+B)e−λAe−λB

)
− ∂2

∂λ2

(
eλ(A+B)Ae−λAe−λB

)
− ∂2

∂λ2

(
eλ(A+B)e−λAe−λB

)
B

]
λ=0

=
1

3

[
−1

2

∂2

∂λ2

(
eλ(A+B)Ae−λAe−λB

)]
λ=0

+
1

3
((A+B)C2 − C2B)
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But B commutes with C2 since they are both functions of space. So:

C3 =
1

3

[
−1

2

∂

∂λ

(
eλ(A+B)(A+B)(Ae−λAe−λB)− eλ(A+B)(A2e−λA + Ae−λAB)e−λB

)]
λ=0

+
1

3
AC2

=
1

3

[
−1

2

∂

∂λ

(
eλ(A+B)(BAe−λA − Ae−λAB)e−λB

)]
λ=0

+
1

3
AC2

=
1

3

[
−1

2

(
(A+B)(BA− AB)−BA2 + A2B −BAB + AB2

)]
+

1

3
AC2

=
1

3

[
−1

2
([A,B]A+B[B,A] + [A,B]B)

]
+

1

3
AC2

=
1

3
[A,C2] =

1

6
[A, [A,B]]

So clearly all the Cn’s involve commutators of A and B and are functions of space.
So all the Cn’s commute with each other and with B. Hence Eq (7.2) becomes:

B = e−λABeλA + e−λAe−λB2λC2e
λBeλA + e−λAe−λBe−λ

2C23λ2C3e
λ2C2eλBeλA + · · ·

= e−λABeλA + e−λA2λC2e
λA + e−λA3λ2C3e

λA + · · ·

So defining C1 = B:

B =
∞∑
n=1

nλn−1e−λACne
λA

Now using the identity:

eYXe−Y = X + [Y,X] +
1

2
[Y, [Y,X]] + · · · =

∞∑
n=0

1

n!
[Y, · · ·, [Y,X] · ··]qn

Where the notation qn indicates that the Y occurs n times. Hence:

B =
∞∑
n=1

nλn−1

∞∑
m=0

λm(−1)m

m!
[A, · · ·, [A,Cn] · ··]qm

=
∞∑
n=1

∞∑
m=n

nλm−1(−1)m−n

(m− n)!
[A, · · ·, [A,Cn] · ··]qm−n

=
∞∑
m=1

m∑
n=1

nλm−1(−1)m−n

(m− n)!
[A, · · ·, [A,Cn] · ··]qm−n
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so equating coefficients of λ, the zeroth order terms give:

B = C1

and the (m− 1)th order terms give:

0 =
m∑
n=1

n(−1)m−n

(m− n)!
[A, · · ·, [A,Cn] · ··]qm−n

=
m−1∑
n=1

n(−1)m−n

(m− n)!
[A, · · ·, [A,Cn] · ··]qm−n +mCm

=⇒ mCm =
m−1∑
n=1

n(−1)m−n−1

(m− n)!
[A, · · ·, [A,Cn] · ··]qm−n

Now assume a formula for Cn suggested by the calculations above of C2 and C3

and prove it by induction:

Cn =
1

n!
[A, · · ·, [A,B] · ··]qn−1

This is true for n = 2, 3. Substituting into the above repetition formula (for terms
n < m):

mCm =
m−1∑
n=1

n(−1)m−n−1

(m− n)!
[A, · · ·, [A, ( 1

n!
[A, · · ·, [A,B] · ··]qn−1)] · ··]qm−n

=
m−1∑
n=1

n(−1)m−n−1

(m− n)!n!
[A, · · ·, [A,B] · ··]qm−1

= [A, · · ·, [A,B] · ··]qm−1

m−1∑
n=1

(−1)m−n−1

(m− n)!(n− 1)!

So the sum term above must be shown to be equal to 1
(m−1)!

. To see this consider

the binomial expansion of (1− x)m−1:

(1− x)m−1 =
m−1∑
k=0

(
m−1
k

)
(−x)m−1−k

=
m−1∑
k=0

(m− 1)!

k!(m− 1− k)!
(−1)m−1−kxm−1−k
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let n = k + 1:

(1− x)m−1 =
m∑
n=1

(m− 1)!

(n− 1)!(m− n)!
(−1)m−nxm−n

= −(m− 1)!

(
m∑
n=1

(−1)m−n−1

(n− 1)!(m− n)!
xm−n

)

= −(m− 1)!

(
m−1∑
n=1

(−1)m−n−1

(n− 1)!(m− n)!
xm−n − 1

(m− 1)!

)

=⇒ (1− x)m−1 = −(m− 1)!
m−1∑
n=1

(−1)m−n−1

(n− 1)!(m− n)!
xm−n + 1

Choosing x = 1:
m−1∑
n=1

(−1)m−n−1

(n− 1)!(m− n)!
=

1

(m− 1)!

and hence it has been proven by induction that:

Cn =
1

n!
[A, · · ·[A,B] · ··]qn−1

Using A = b2

6
∇2 and B = −w:

Cn+1 =
1

(n+ 1)!
[A, · · ·[A,−b

2

6
∇2(w)] · ··]qn−1

= − 1

(n+ 1)!

b2n

6n
∇2n(w)

7.2.2 Solution in terms of separated exponentials

Using this in the formal equation solution:

q(r, s+ δs) =
2∏

n=∞

eδs
nCne−δsw(r) exp

(
δs
b2

6
∇2

)
q(r, s)

=
1∏

n=∞

e
δsn+1

(
− 1

(n+1)!
b2n

6n
∇2nw

)
e−δsw(r) exp

(
δs
b2

6
∇2

)
q(r, s)

=

(
1∏

n=∞

e−
δsn+1b2n

6n(n+1)!
∇2nwe−δsw(r)

)
exp

(
δs
b2

6
∇2

)
q(r, s)

= γ exp

(
δs
b2

6
∇2

)
q(r, s)
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Where:

γ =
1∏

n=∞

e−
δsn+1b2n

6n(n+1)!
∇2nwe−δsw(r)

= exp

(
−
∞∑
n=1

δsn+1b2n

6n(n+ 1)!
∇2nw − δsw

)

= exp

(
−δs

∞∑
n=0

δsnb2n

6n(n+ 1)!
∇2nw

)

This coefficient cannot be evaluated because of the infinite sum. It can be approx-
imated by noting:

∞∑
n=0

δsnb2n

6n(n+ 1)!
∇2nw = w +

δsb2

6 · 2
∇2w +

δs2b4

62 · 6
∇4w + · · ·

u w +
δsb2

6 · 2
∇2w +

δs2b4

62 · 8
∇4w + · · · = exp

(
δs

2

b2

6
∇2

)
w

Which is accurate up to first order. Hence the solution is:

q(r, s+ δs) = γ exp

(
δs
b2

6
∇2

)
q(r, s)

where γ = exp

(
−δs exp

(
δs

2

b2

6
∇2

)
w

)

7.2.3 Solution of simple diffusion equation

To evaluate this solution the function exp
(
δs b

2

6
∇2
)
g(r) needs to be found with

g(r) = q(r, s) and also with δs→ δs
2
, g(r) = w(r). But this is the solution of the

simple diffusion equation (propagator equation without the mean field term):

∂

∂t
f(r, t) =

b2

6
∇2f(r, t)

=⇒ Lf(r, t) = 0, L =
b2

6
∇2 − ∂

∂t

Given a known initial condition f(r, 0), the solution to the above equation can be
written using a green’s function as:

f(r, t) =

∫
allspace

G(r − r ′, t)f(r ′, 0)dr ′
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where LG(r, t) = 0. Using a gaussian form of the green’s function:

G(r, t) =
A

t3/2
exp

(
−B|r|

2

t

)
we have:

LG(r, t) = A

(
b2

6
∇2 − ∂

∂t

)
1

t3/2
exp

(
−B|r|

2

t

)
= A

[
b2

6t3/2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
exp

(
−B(x2 + y2 + z2)

t

)

− ∂

∂t

(
1

t3/2
exp

(
−B|r|

2

t

))]

= A

[
b2

6t3/2

(
∂

∂x

(
−2xB

t
exp

(
−B(x2 + y2 + z2)

t

))
+ · · ·

)

+

(
3

2t5/2
− B|r|2

t7/2

)
exp

(
−B|r|

2

t

)]

= A

(
b2

6t3/2

(
−2B

t
+

4B2x2

t2
+ · · ·

)
+

3

2t5/2
− B|r|2

t7/2

)
exp

(
−B|r|

2

t

)
= A

(
b2

6t3/2

(
−6B

t
+

4B2|r|2

t2

)
+

3

2t5/2
− B|r|2

t7/2

)
exp

(
−B|r|

2

t

)
= A

(
1

t5/2

(
−Bb2 +

3

2

)
+
B|r|2

t7/2

(
4b2B

6
− 1

))
exp

(
−B|r|

2

t

)
So LG(r, t) = 0 if:

Bb2 =
3

2
=⇒ B =

3

2b2

=⇒ 4b2B

6
− 1 =

6

6
− 1 = 0 X

Hence the solution is:

f(r, t) =

∫
allspace

A

t3/2
exp

(
−3|r − r ′|2

2b2t

)
f(r ′, 0)dr ′

The normalization constant A is set by the fact that if f(r, 0) is constant in space
(and t is small) then by the differential equation;

b2

6
∇2f(r, t)|t=0 =

b2

6
∇2f(r, 0) = 0 =

∂

∂t
f(r, t)|t=0 =⇒ f(r, t) = f(r, 0)
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so f(r, t) is constant in space (so just r = 0 can be considered) and:

f(r, t) =

∫
allspace

A

t3/2
exp

(
−3|r − r ′|2

2b2t

)
f(r ′, 0)dr ′

= f(r, 0)
A

t3/2

∫
exp

(
−3|r ′|2

2b2t

)
dr ′

= f(r, 0)
A

t3/2

∫ ∞
0

(r′)2 exp

(
−3(r′)2

2b2t

)
dr′
∫ π

0

∫ 2π

0

sin θdθdφ

= f(r, 0)Aπ
√
π

(
3

2b2

)−3/2

=⇒ A =

(
3

2πb2

)3/2

So choosing t = δs and starting at any point s:

f(r, s+δs) = exp

(
δs
b2

6
∇2

)
f(r, s) =

(
3

2πδsb2

)3/2 ∫
exp

(
−3|r − r ′|2

2b2δs

)
f(r ′, s)dr ′

7.2.4 Final solution

So the solution of the full propagator equation is:

q(r, s+ δs) = γ exp

(
δs
b2

6
∇2

)
q(r, s)

where γ = exp

(
−δs exp

(
δs

2

b2

6
∇2

)
w(r)

)
and where the exponential is calculated through:

exp

(
δs
b2

6
∇2

)
q(r, s) =

(
3

2πδsb2

)3/2 ∫
exp

(
−3|r − r ′|2

2b2δs

)
q(r ′, s)dr ′

And similarly for the exponential in γ with δs→ δs
2

and q(r ′, s)→ w(r)



Chapter 8

Appendix 2: Free Energy Model
Calculations

8.1 Lens Model Calculations

Figure 8.1: Lens model of the collapsed polymer. The yellow region is that of
polymer species B, species A forms k lenses on the surface

81
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8.1.1 Surface tension

The surface area and volume of each lens is found by using the solid angle of the
cone Ω = 2π(1− cos θ). The surface area of one side of the lens is given by:

A 1
2
Lens = 4πR2 Ω

4π
= 2πR2 (1− cos θ)

= 2πR2

(
1−

√
1− x2

R2

)
Using the A-B surface tension equation (3.1) the free energy (in units of kT )
resulting from surface tension between species A and B of one lens is:

FAB(Lens) =
3

4π
√

6
χ

1/2
ABφ

A 1
2
Lens

b2

=
3

2
√

6
χ

1/2
ABφ

(
1−

√
1− x2

R2

)
R2

b2

Hence the total free energy resulting from A-B surface tension is given by:

FAB =
3

2
√

6
χ

1/2
ABkφ

(
1−

√
1− x2

R2

)
R2

b2

8.1.2 Species B stretching

Cone Stretching equation

The free energy resulting from stretching an ideal chain into a cone-shaped volume
can be evaluated by generalizing the linear chain stretching energy given in the
theory section Eq. (2.2). The cone is split into discs of infinitesimal height dz and
radius Rc(N), each containing dN ′ monomers where N ′ is the monomer number
starting at the base of the cone. By conservation of density:

φπ[Rc(N
′)]2dr =

4

3
b3dN ′

=⇒ dr =
4b3dN ′

φ[Rc(N ′)]2

The linear stretching equation applies in each infinitesimal disc:

dFS =
3dr2

2dN ′b2

=
8b4

3φ2[Rc(N ′)]4
dN ′
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Hence integrating over the whole half B block of total monomers N 1
2
B:

FS cone =
8b4

3φ2

∫ N 1
2B

0

[Rc(N
′)]−4dN ′ (8.1)

This gives the stretching free energy penalty for stretching into a cone.

B stretching

Figure 8.2: Species B stretching model

The expansion rate of the cone is described by the function r(z) where z is the
height above the lens surface along the axis of the cone. The initial radius r(0) = y
is set by the requirement that the half lens surface area be taken up by the species
B stretching cone bases. Given that the polymer has n total blocks, then the total
junction points is also n and the junction points per lens is n

k
. Hence:

Acone base =
A 1

2
Lens

jn. points

=⇒ πy2 =

2πR2

(
1−

√
1− x2

R2

)
n/k

so:

y = R

√√√√2k

n

(
1−

√
1− x2

R2

)
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The function r(z) is given by:

sin θ =
r(z)

R + z

=⇒ r(z) = (R + z) sin θ = (R + z)
y

R

The height h is set by the requirement that the volume of all the stretching cones
must be equal to the volume of species B polymer. The volume of one stretching
cone is given by:

V1 cone =
1

3
π(r(h))2(h+R)− 1

3
πy2R

=
1

3
πy2

(
(R + h)3

R2
−R

)
Given that there are n half blocks of species B and there are NB total species B
monomers:

nφV1 cone =
4

3
πb3NB

=⇒ (R + h)3

R2
−R =

4b3NB

nφy2

Hence:

h = R

((
4b3NB

nφy2R
+ 1

)1/3

− 1

)

Now to use the cone stretching equation (8.1), Rc(N
′) is needed. Given that

each species B half block contains NB
n

monomers and assuming a linear increase
of N ′ with z:

z(N ′) =
hn

NB

N ′

since then z(NB
n

) = h. This gives:

Rc(N
′) = r(z(N ′)) = (R +

hn

NB

N ′)
y

R

Hence by equation (8.1) the stretching free energy (in units of kT ) for each half
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block in species B is given by the integral:

FS(
1

2
A block) =

8b4

3φ2

∫ NB
n

0

(Rc(N
′))
−4
dN ′

=
8b4R4

3φ2y4

∫ NB
n

0

(
R +

hn

NB

N ′
)−4

dN ′

=
8b4R4

3φ2y4

[
− NB

3hn(R + hn
NB
N ′)3

]NB
n

0

=
8b4NBR

4

9hnφ2y4

(
R−3 − (R + h)−3

)
So the total stretching free energy due to species B is:

FSB =
8b4NBR

4

9hφ2y4

(
R−3 − (R + h)−3

)
8.1.3 Species A stretching

The base radius of each cylinder is simply given by the base radius of the corre-
sponding species B stretching cone y. If the height of each cylinder is H then by
conservation of volume in species A:

nφV 1
2

block cylinder =
4

3
πb3NA

=⇒ πy2H =
4πb3NA

3nφ

=⇒ H =
4b3NA

3nφy2

Hence by the linear stretching equation (2.2) the stretching free energy in each
cylinder is:

FS(
1

2
block cylinder) =

3H2

2NCb2

=
3n

2NAb2
16b6N2

A

9n2φ2y4

=
8b4NA

3nφ2y4

so the total stretching free energy due to species A is:

FSA =
8b4NA

3φ2y4
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8.1.4 Relating k to x

The volume of one lens is:

VLens = 2(Vcap + cone − Vcone)

= 2

(
4

3
πR3 Ω

4π
− 1

3
πx2
√
R2 − x2

)
= 2

(
2

3
πR3

(
1−

√
1− x2

R2

)
− 1

3
πx2R

√
1− x2

R2

)

=
4

3
πR3

(
1−

√
1− x2

R2

(
1 +

x2

2R2

))
Given that species A consists of NA monomers at a constant volume fraction φ:

kφVLens =
4

3
πb3NA

=⇒ kφR3

b3NA

=

(
1−

√
1− x2

R2

(
1 +

x2

2R2

))−1

Hence using the volume fraction equation (2.4) an equation that relates the number
of lenses k to the size of each lens x is obtained:

NA

kN
= 1−

√
1− x2

R2

(
1 +

x2

2R2

)

8.2 Micelle Model Calculations

8.2.1 Surface tension

This system is significantly simpler to model as species A is simply a sphere in
the middle of the larger sphere of species B. The A-B surface tension free energy
is given by (equation (3.1)):

FAB =
3

4π
√

6
χ

1/2
ABφ

AA sphere

b2

=
3√
6
χ

1/2
ABφ

R2
Asphere

b2

So using equation (2.4) for the species A sphere:

FAB =
3√
6
χ

1/2
ABφ

1/3N
2/3
A
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8.2.2 Species B stretching

Using the same cone as in figure 8.2 the base radius y is set by dividing up the
sphere surface area into n circles corresponding to each junction point:

nπy2 = 4πR2
A

=⇒ y =
2RA√
n

This then gives:

y

RA

= sin θ =
r(z)

RA + z

=⇒ r(z) =
2√
n

(RA + z)

By conservation of volume in species B:

n (Vcone h+R − Vcone R) =
4

3
πb3NB

=⇒ nπ

3

(
(r(h))2 (RA + h)− y2RA

)
=

4

3
πb3NB

=⇒ n

(
4(RA + h)3

n
− 4R3

A

n

)
= 4b3NB

=⇒ h = RA

((
b3NB

R3
A

+ 1

)1/3

− 1

)
Again, the function z(N ′) = hn

NB
N ′ so

r(N ′) =
2√
n

(RA +
hn

NB

N ′)

Using the cone stretching equation (8.1):

FSB =
8b4

3φ2

∫ NB
n

0

n2

4

(
RA +

hn

NB

N ′
)−4

dN ′

=
2b4n2

3φ2

[
− NB

3hn(RA + hn
NB
N ′)3

]NB
n

0

=
2b4nNB

9φ2h

(
R−3
A − (RA + h)−3

)
so the stretching in species B gives free energy:

FSB =
2b4nNB

9φ2hR3
A

(
1−

(
1 +

h

RA

)−3
)


