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ABSTRACT: The diapycnal motion in the stratified ocean near a sloping bottom boundary is studied using analytical
solutions from one-dimensional boundary layer theory. Bottom-intensification of the diapycnal mixing intensity ensures
that in the stratified mixing layer (SML), where isopycnals are relatively flat, the diapycnal motion is downward toward
denser fluid. In contrast, convergence of the diffusive buoyancy flux near the seafloor drives diapycnal upwelling in what we
define as the bottom boundary layer (BBL). Much of the one-dimensional BBL is characterized by a stratification only
slightly reduced from that in the SML because themaximum in the buoyancy flux at the top of the BBL, where the diapycnal
velocity changes sign, must occur in well-stratified fluid. The diapycnal upwelling in the BBL is determined by variations not
only in the magnitude of the buoyancy gradient but also in the curvature of isopycnals. The net diapycnal upwelling is
concentrated in the bottom half of the BBL where the magnitude of the buoyancy gradient changes most rapidly. The
curvature effect drives upwelling near the seafloor that only makes a significant contribution to the net upwelling for steep
slopes. The structure of the diapycnal velocity in this stratified BBL differs from the case of a turbulent well-mixed BBL that
has been assumed in some recent theoretical studies on bottom-intensified mixing. This work therefore extends recent
theories in a way that should be more applicable to abyssal ocean observations where well-mixed BBLs are not common.

KEYWORDS: Abyssal circulation; Diapycnal mixing; Lagrangian circulation/transport; Mass fluxes/transport;
Boundary layer

1. Introduction
The turbulent bottom boundary layer in the abyssal ocean is

thought to play a key role in the conversion of dense bottom
waters into lighter water (de Lavergne et al. 2016; Ferrari et al.
2016; McDougall and Ferrari 2017, hereafter MF17; de Lavergne
et al. 2017). Theobservedbottom-intensificationof internal-wave-
driven mixing above rough topography in the abyssal ocean
(Toole et al. 1994; Polzin et al. 1997; Waterhouse et al. 2014)
drives the densification, or diapycnal downwelling, of waters
within so-called ‘‘abyssal mixing layers’’ extending hundreds of
meters above the topography. In contrast, due to the insulating
bottom boundary condition the buoyancy flux must converge
within a thinner layer right next to the seafloor, driving a light-
ening of waters and thus diapycnal upwelling. This motivates a
definition of a bottom boundary layer (BBL), used throughout
this article, as that layer over which the diapycnal transport is
upward. Globally, the diapycnal upwelling within the BBL must
exceed the diapycnal downwelling in the stratified mixing layer
(SML) above the BBL in order to drive a net diapycnal upwelling
that balances the formation of dense water at the high latitudes.
For example, Thurnherr et al. (2020) suggest that the majority of
the upwelling of Antarctic bottom water in fracture zone canyons
in the Brazil Basin occurs within thin BBLs along the canyon
walls. However, despite the inferred importance of this BBL di-
apycnal upwelling it has yet to be observed directly.

Several recent theoretical studies on the role of the BBL in
the global diapycnal circulation (Holmes et al. 2018; MF17)

have modeled the BBL as an idealized fully mixed layer where
the buoyancy flux increases linearly with distance away from
the seafloor. This fullymixed BBLwas assumed to host all of the
global diapycnal upwelling, significantly more than the net up-
welling of bottom waters by an ‘‘amplification factor’’ that may
reach factors of 3–5. However, such fully mixed BBLs are rarely
observed in the ocean (e.g., van Haren 2017; Thurnherr et al.
2020), raising the question of whether the model of MF17 is
appropriate for studying abyssal water-mass transformation.

Useful theoretical solutions in which some of these issues
can be explored are available from steady-state one-dimen-
sional boundary layer theory (e.g., Wunsch 1970; Phillips et al.
1986; Thorpe 1987; Garrett 1990, 1991; Garrett et al. 1993;
Callies 2018). While this theory does not fully capture much of
the complexity in near-bottom flows, including processes such
as symmetric instability, baroclinic instability, tidal variability,
and topographic variability (e.g., Allen and Newberger 1998;
Umlauf and Burchard 2011; Kunze et al. 2012; Umlauf et al.
2015;Wenegrat et al. 2018; Callies 2018; Ruan et al. 2019; Ruan
and Callies 2020), it provides a useful starting point to discuss
diapycnal fluxes that is more dynamically consistent than the
assumption of a fully mixed layer. The connection between
diapycnal transport and boundary layer theory has been dis-
cussed by Garrett (2001). He introduced a formula for the di-
apycnal velocity that depends not only on variations in the
magnitude of the buoyancy gradient and diapycnal diffusivity,
but also on the geometry, or curvature, of isopycnals. However,
he did not further explore the partitioning between these
contributions.

The intention of this article is to clarify the connections
between BBL turbulence and the diapycnal transport in the
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abyssal ocean by 1) providing a clear and simple explanation as
to why diapycnal upwelling is expected near the boundary, 2)
examining several driving forces of diapycnal transport in the
one-dimensional BBL, and 3) comparing and contrasting
the MF17 fully mixed model of the BBL with the BBL
structure obtained from one-dimensional boundary layer
theory. Our hope is to better connect the recent theoretical
results to observations. We will also discuss some gener-
alizations of these results to cases where upslope variations
in the turbulent buoyancy flux or isopycnal structure are
permitted.

2. Diapycnal transport and BBL upwelling

a. The diapycnal velocity
We begin with the Boussinesq buoyancy equation,

Db

Dt
52= !B , (1)

where b is buoyancy and B is a turbulent, nonadvective,
buoyancy flux per unit area. Throughout most of this article we
will consider a diffusive flux,

B52k=b , (2)

where k is a turbulent eddy diffusivity. However, it should be
noted that within a fully mixed bottom layer (as used in MF17)
the turbulent buoyancy flux is not related to the local buoyancy
gradient.

The diapycnal velocity v (or fluid volume flux across an
isopycnal toward lighter densities per unit area of the iso-
pycnal) can be written (Marshall et al. 1999)

v 52
1

j=bj
= !B . (3)

Diapycnal upwelling occurs when the turbulent buoyancy
flux per unit area is convergent resulting in buoyancy gain.
The factor of j=bj21 is present because fluid parcels move
more rapidly across widely spaced isopycnals given a similar
rate of buoyancy gain or loss. A finite value of j=bjis needed
to define the diapycnal velocity as otherwise the location
of the given isopycnal across which v transports volume is
ambiguous.

Equation (3) suggests that one would expect diapycnal up-
welling to occur within some layer immediately adjacent to the
seafloor. To see this, consider a nonzero turbulent diffusivity
k and a stable stratification some distance H away from the
boundary. The buoyancy flux B will have a component that is
directed toward the boundary at this distance. The zero normal
buoyancy flux condition at the seafloor (or an inward pointing
geothermal buoyancy flux) then implies a convergence of the
turbulent buoyancy flux and upwelling, v . 0. This intuition
will be put on a firmer footing in section 2c. However, we first
present several simple decompositions of Eq. (3).

b. A geometric decomposition of the diapycnal velocity
By writing the diffusive buoyancy flux B5Bn̂ in terms of its

magnitude B and the isopycnal normal n̂ and using the chain

rule the diapycnal velocity in Eq. (3) can be decomposed into
two terms,

v 5
1

j=bjn̂ ! =B
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

v B

1
B

j=bj= ! n̂
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

v g

. (4)

Equation (4) shows that spatial variations in the buoyancy flux
magnitude, associated with v B, are not the only contributor to
diapycnal transport. The additional factor v g, which for a dif-
fusive flux where B5kj=bjcan also be written

v
g
5k= ! n̂ , (5)

arises from isopycnal curvature. The factor v g is zero when
isopycnals are flat even if the stratification varies. This de-
composition has been discussed by Garrett [2001, his Eq. (11)].

The diapycnal velocity can also be decomposed into com-
ponents associated with variations in the diffusivity and the
buoyancy gradient, respectively [substitute Eq. (2) in Eq. (3)
and use the chain rule],

v 5 n̂ ! =k|fflfflffl{zfflfflffl}
v k

1
k

j=bj=
2b

|fflfflfflfflffl{zfflfflfflfflffl}
v
=2b

. (6)

Equations (6) and (4) are related through v B 5 v j=bj1 v k, where

v j=bj5
k

j=bjn̂ ! =(j=bj) , (7)

is associated with gradients in isopycnal layer thickness. The
decomposition in Eq. (6) will prove useful as the first term
is largely responsible for downwelling in the SML (where
k decreases with height) while the second term is largely re-
sponsible for upwelling in the BBL (where the slope-normal
buoyancy gradient must go to zero at the boundary). These
decompositions will be discussed in more detail in section 3
using solutions from one-dimensional boundary layer theory.

c. Net diapycnal transport across an isopycnal near the
boundary
Returning to the total diapycnal velocity [Eq. (3)], in this

section we revisit the MF17 derivation of the net diapycnal
transport across an isopycnal near the boundary in order to
establish under what conditions net upwelling should be ex-
pected. Here we will generalize theMF17 result by considering
an arbitrarily curved isopycnal geometry (accounting for any
diapycnal transport associated with v g and lifting the as-
sumption of a fully mixed BBL). We also include the diapycnal
transport term associated with convergences or divergences of
the buoyancy flux across isopycnals inside the BBL that was
neglected by MF17. For convenience, we will consider a co-
ordinate system aligned with a sloping abyssal boundary (with
slope to the horizontal of tanu) where z is the slope-normal
coordinate (with origin at the boundary), y is the upslope di-
rection and x is the along-slope direction (see Fig. 1). The net
volume transport across an isopycnal with buoyancy value b
within a distance h of the boundary, E(b, h, t), can be derived
by considering the region between that isopycnal and the
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isopycnal with buoyancy value b2 db [dR(b, h, t), gray region
in Fig. 1], where db is an infinitesimal buoyancy difference.
Integrating Eq. (3) over the isopycnal out to a slope-normal
distance z 5 h away from the boundary,

E(b,h, t)5
ðð

A(b,h,t)
v dS52

ðð

A(b,h,t)

= ! B
j=bjdS. (8)

whereA(b, h, t) is the area of the isopycnal within a distance h
of the boundary and dS is an area element on that isopycnal.
We then make use of the mathematical identity (Marshall
et al. 1999)

d

db

ððð

R(b,h,t)
a(x, t) dV5

ðð

A(b,h,t)

a(x, t)

j=bj
dS, (9)

for any field a(x, t), whereR(b, h, t) corresponds to the region
where buoyancy is less than b below the height h. This identity
allows the division by the potentially problematic buoyancy
gradient magnitude j=bjto be replaced in favor of a buoyancy
derivative. Applied to Eq. (8) this yields

E(b,h, t)52
d

db

ððð

R(b,h,t)
= ! B dV (10)

Using the divergence theorem and the insulating boundary
condition for B at the boundary then yields

E(b,h, t)52
dBh

db
2

d

db

 ððð

A(b,h,t)
B ! n̂ dS

!

, (11)

where

dBh 5
ð

dA

B ! n̂ dS (12)

is the area-integrated turbulent buoyancy flux exiting the in-
finitesimal isopycnal layer across the height z 5 h (where the
normal vector n̂ points outward away from the region R). By
introducing the (positive) area-integrated turbulent buoyancy
flux over the b isopycnal,

F(b,h, t)52
ðð

A(b,h,t)
B ! n̂ dS, (13)

and noting that along the dA surface dS/db5 dx/by, Eq. (11)
can be rewritten as

E(b,h, t)52
ðBz

b
y
j
z5h

dx1
dF(b,h, t)

db
, (14)

where the integral in the along-slope x direction is performed
along the b isopycnal at the height z 5 h and Bz is the slope-
normal component of the buoyancy flux per unit area. An al-
ternative derivation of Eq. (14), following the same approach
as MF17, is provided in appendix A. Equation (14) holds
generally for any isopycnal at any height h even in the presence
of unsteadiness.

When the turbulent buoyancy flux per unit areaB is directed
perpendicular to isopycnals (e.g., a diffusive buoyancy flux),
then the first term in Eq. (14) will always be positive if the fluid
is stably stratified at the height z 5 h (i.e., Bz 52k bz is neg-
ative if bz is positive, while by will always be positive at the last
point at which the isopycnal crosses the height h before en-
countering the boundary given a large-scale stable background
stratification). Hence, our intuition that net upwelling should
occur near the boundary will hold providing that upslope
variations in the turbulent buoyancy flux across isopycnals
between the height h and the boundary [the second term in
Eq. (14)] do not overwhelm the convergence of the turbulent
buoyancy flux in the slope-normal direction. This is clearly true

FIG. 1. A schematic illustrating the rotated coordinate system used in this article, where z is
the slope-normal direction (where the slope is tanu), y is the upslope direction, and x is the
along-slope direction. In the one-dimensional solutions the far-field interior stratification is
N2. The top of the BBL is defined by the height z5HBBL at which the diapycnal velocity v is
zero (black dotted line in A). The gray shaded region denotes an infinitesimal region between
two isopycnals andwithin a distance h of the boundary (black dashed line in B) over which the
net diapycnal transport is calculated (also see appendix A). This yields a relationship [Eq.
(14)] between the diapycnal transport across the isopycnal E, the diffusive buoyancy flux
across that isopycnal F, and the diffusive buoyancy flux toward the boundary at the height h,
Bz, that is valid for an arbitrary isopycnal geometry (C).
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for small hwhere F(b, h, t) is small, while for larger h the rate at
which F(b, h, t) must vary with b in the upslope direction to
achieve net downwelling turns out to be quite large, as exam-
ined in section 5. This second term in Eq. (14) is the abyssal
ocean analog of water-mass transformation driven by the
convergence of the lateral diffusive buoyancy flux across near
vertical isopycnals in the mixed layer (Marshall et al. 1999). To
continue further, we examine the diapycnal velocities and
transport that arises in simple solutions taken from one-
dimensional boundary layer theory.

3. Diapycnal transport in a stratified one-dimensional
boundary layer

a. One-dimensional boundary layer theory
We consider the flow near an abyssal boundary with con-

stant slope and far-field interior stratification N2 such that

›b

›z
/N2 cosu, as z/‘ , (15)

›b

›y
5N2 sinu . (16)

Throughout most of the article we will use a bottom-intensified
diffusivity with exponential form,

k(z)5k‘ 1 (k0 2k‘)e
2z/d̂ , (17)

with far-field value k‘, near boundary value k0 a decay scale d̂.
However, in section 3e we briefly discuss the sensitivity of our
results to other choices of the form for the diffusivity in the BBL.

An approximate one-dimensional (uniform in the upslope
and along-slope directions) solution to the steady, rotating
equations of motion (e.g., Garrett et al. 1993), discussed in
more detail in Holmes et al. (2019) and Callies (2018), can be
derived assuming that the decay scale d̂ of the diffusivity is
much larger than the thickness scale q21

0 of the layer in which
friction is important in the constant k case,

q4
0 5

N2 sin2u

4Pr
y0
k2
0

[11 (SPr
u0)

21] . (18)

In Eq. (18), S 5 N2 tan2u/f 2 is the slope Burger number, f is
the Coriolis parameter and Pru0 5 nu0/k0 and Pry0 5 ny0/k0 are
the Prandtl numbers near the boundary associated with the
viscosity in the along-slope (x) and upslope (y) momentum
equations, respectively. The approximate analytic solution is
given by (see appendix A of Holmes et al. 2019),

C(z)5
cotu

11 (SPr
u0)

21
[k1 (SPr

u0)
21k‘]

[12 e2q0z(cosq
0
z1 sinq

0
z)] , (19)

›b

›z
5

N2cosu

11 (SPr
u0)

21

h
11 (SPr

u0
)21k‘

k

i

[12 e2q0z(cosq0z1 sinq0z)] , (20)

where C(z) is the net upslope transport (per along-slope me-
ter) below the slope-normal height z such that the upslope
velocityV5 ›C/›z. In steady stateC(z) is equivalent to the net
diapycnal transport below the height z, or indeed the net
transport across a horizontal surface between the height z and
the boundary (Garrett et al. 1993; Garrett 2001).

As highlighted by Callies (2018), for typical abyssal ocean
parameters and order one Prandtl number this solution pre-
dicts unrealistically weak stratification throughout the SML
where k is enhanced [Eq. (20)]. This weak stratification is due
to the lack of representation of baroclinic-instability-driven
restratification. A realistic stratification can be recovered
using a large Pru0, physically interpreted as a parameteri-
zation for restratification by baroclinic eddies based on the
thickness-weighted average formalism (Rhines and Young
1982; Greatbatch and Lamb 1990). Here, as we will mainly
discuss the flow within the BBL, we will focus on the limit
SPru0/‘ where eddies maintain the stratification in the
SML at its far-field value N2. However, in section 3d we
briefly discuss the impact of reduced SML stratification
through a finite choice for Pru0.

Example profiles of the buoyancy gradient [Eq. (20)], the
buoyancy flux and the various diapycnal velocity components
in the limit SPru0/‘ are shown in Fig. 2 for the parameters
tanu5 1/100,N25 1026 s21, k‘5 1025m2 s21, k05 1023m2 s21,
d̂ 5 200m, Pry0 5 1, SPru0/‘. While these solutions do not
capture the full complexity present in more realistic BBLs (e.g.,
Allen andNewberger 1998; Umlauf andBurchard 2011;Winters
2015; van Haren 2017; Wenegrat et al. 2018; Ruan et al. 2019),
they serve as a useful starting point.

b. Contributions to diapycnal flow within the BBL
The slope-normal buoyancy gradient from theone-dimensional

solutions [Eq. (20) in the limit SPru0/‘] shows a maximum at
z5 p q21

0 , slightly increased from its far-field value of N2, be-
fore decaying to zero as the boundary is approached (blue line
in Fig. 2a, where the dashed black line marks z5 p q21

0 ). The
magnitude of the slope-normal component of the buoyancy
flux kbz, whose divergence determines the diapycnal velocity in
the one-dimensional case [Eq. (3) yields v 5 ›z(kbz)/j=bj],
shows a similar structure with the additional effect of the
gradual reduction in k over its 200-m decay scale (green line in
Fig. 2a). The strong convergence of the slope-normal compo-
nent of the buoyancy flux kbz drives diapycnal upwelling (blue
line in Figs. 2b,c) which transitions to diapycnal downwelling
away from the boundary at the top of what we define as the
BBL (where v 5 0, solid black line in Fig. 2). This highlights
the fact that much of the BBLmust be well stratified, as the top
of the BBL corresponds to the maximum in the buoyancy flux
and therefore cannot have a stratification much reduced from
that in the SML.

While the slope-normal component of the diffusive buoy-
ancy flux goes to zero at the boundary there is still a small but
nonzero upslope component 2kby. This means that the mag-
nitude of the buoyancy flux B5kj=bjis not actually zero at
the boundary (although it is too small to distinguish from
zero, orange dashed line in Fig. 2a). However, in this one-
dimensional context the upslope component of the buoyancy
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flux has no convergence, meaning that v is zero at the
boundary. If upslope variability were permitted, then v could
be nonzero at the boundary (although in a steady solution
v must be zero at the boundary to satisfy a no-slip boundary
condition). However, as discussed in more detail in section 5,
upwelling would still be expected to dominate in the BBL due
to the difference in length scales between along-boundary and
slope-normal gradients.

The BBL upwelling is strongly peaked in the lower portion
of the BBL where the convergence of the slope-normal
buoyancy flux is maximum. This structure is a consequence
of the structure in bz, with v closely following the term v =2b

(orange dashed line in Fig. 2b). The term v =2b is positive below
the height p q21

0 (dashed black line in Fig. 2). If kwere constant
then this height would correspond to the top of the BBL where
v 5 0. Instead, with a bottom-intensified diffusivity, v k is
negative (green line in Fig. 2b) shifting the top of the BBL (and
the height of maximum upslope transport C) toward the
boundary. The v k drives weak but extensive downwelling ex-
cept close to the boundary where the isopycnal normal points
along the boundary n̂5 ŷ in which direction k is constant [Eq.
(6)]. Therefore, in the one-dimensional solutions (and as-
suming no reduction in SML stratification), v k captures the
‘‘SML downwelling’’ referred to by MF17 and Holmes
et al. (2018, 2019), while v =2b captures the BBL upwelling.
However, v =2b also contributes a small amount of down-
welling above z5 p q21

0 because of the slight enhancement
of stratification there.

The diapycnal transport can also be split into components
arising from variations in the buoyancy gradient magnitude
v B and isopycnal curvature v g (orange dashed and green

solid lines, respectively, in Fig. 2c). The buoyancy gradient
magnitude v B dominates throughout most of the BBL.
However, in the lower portion of the BBL where isopycnal
curvature is maximum v g also contributes. The isopycnal
curvature drives upwelling here because isopycnals must
curve downward (on average) to encounter the boundary at
right angles and thus are concave with respect to the positive
buoyancy coordinate. For small slopes, this term is only
significant close to the boundary in the lowest part of the
BBL as it is only here that the isopycnals depart significantly
from the horizontal.

c. Contributions to net upwelling across the BBL
Figure 2c suggests that v g may make a contribution to net

diapycnal upwelling within the BBL. However, v is defined as
the diapycnal transport per unit isopycnal area, not per unit
height z. For the 1D solutions where gradients are constant in
y, the net diapycnal transport [Eq. (8)] associated with a par-
ticular diapycnal velocity component v c within a distance h of
the boundary can be written in terms of an integral in the slope-
normal coordinate z (also see Garrett 2001),

E
c
(h)5

ððh

0

v
c

ds

dz
dz dx , (21)

5
ððh

0

v
c

j=bj
b
y

dz dx , (22)

where ds is a distance along the isopycnal which has been re-
written in terms of the buoyancy gradient magnitude as
ds/dz5j=bj/by. This metric term converts diapycnal transport
per unit area of an isopycnal to diapycnal transport per unit z.

FIG. 2. Profiles from one-dimensional boundary layer theory. (a) The magnitude of the turbulent buoyancy flux in the z direction kbz,
themagnitude of the turbulent buoyancy fluxB5kj=bj, and the slope-normal buoyancy gradientmultiplied by the near-bottomdiffusivity
k0bz. (b),(c) Various contributions to the total diapycnal velocity v . Note that the x scale has been split into two sections. The parameters
used are a slope of 1/100,N25 1026 s22, k‘ 5 1025 m2 s21, k05 1023 m2 s21, and d̂5 200m. The solid black line marks the top of the BBL
where v 5 0, and the dashed black line marks the height z5 pq21

0 . Note that the y axis here is z and does not correspond to the distance
along an isopycnal, meaning that the relative contribution of different components of the diapycnal velocity to the total diapycnal
transport cannot be assessed from these profiles (see Fig. 3).
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For the steady one-dimensional solutions a diapycnal transport
per unit z is equivalent to an upslope velocity Vc (i.e., v cj=bj5
Vcby), or equivalently the diapycnal transport below the height
h is equivalent to the upslope transport below the height
h [Ec(h)5

Ð
Cc(h) dx].

For the full diapycnal velocity v c 5 v [Eq. (3)], Eq. (22)
reduces to the expression derived in section 2c for E(h) [Eq.
(14)], where dF/db 5 0 for the one-dimensional solutions. By
definition E(h) peaks at the top of the BBL where v 5 0. Much
of this BBL upwelling is associated with flow in the lower
portion of the BBL (Fig. 2c). In fact, in the case of a constant
diffusivity it can be shown that the bottom p 21 of the BBL
hosts half of the net upwelling (see appendix B).

Integrating through the SML into the far-field yields the net
diapycnal transport,

E/ E‘ 5k‘ cotu

ð
dx, as h/‘ . (23)

This transport, associated with the far-field diffusivity, is small
in this one-dimensional context. Similar expressions can be
derived for the net diapycnal transports due to the individual
contributions to E‘ (see appendix C). In the limit q21

0 " d̂
these reduce to

E‘
k ’ cotu(k‘ 2k0)

ð
dx , (24)

E‘
=2b

’ k
0
cotu

ð
dx , (25)

E‘
g ’ k0 arctan(cotu)

ð
dx , (26)

with E‘
B 5 E‘ 2 E‘

g . As E‘
=2b

corresponds to the total BBL up-
welling in the one-dimensional solution, the ‘‘amplification
factor’’ quantifying the ratio of BBL upwelling to total up-
welling in this solution is given by

E‘
=2b

E‘ 5
k
0

k‘

. (27)

This can be large, but only because the net transport in the one-
dimensional solution is small.

More interesting is the fraction of BBL upwelling associated
with isopycnal curvature,

E‘
g

E‘
=2b

’
k0 arctan(cotu)

k0 cotu
5 tanu arctan(cotu)5

$p
2
2 u

%
tanu .

(28)

This function is plotted in Fig. 3a as a function of the slope tanu.
Counterintuitively, the contribution of isopycnal curvature to
BBL upwelling increases as the slope increases even though
the isopycnal slope experiences less change approaching a
steep slope than a shallow slope. This is because the transport
due to isopycnal curvature is relatively constant at slopes less
than 1/10 [arctan(x21) does not changemuch for small x], while
the BBL transport E‘

=2b
decreases significantly as the slope in-

creases [Eq. (25)]. Profiles of the contributions to net BBL

upwelling (v g and v B, which sum to give v =2b in the limit
q21
0 " d̂) which include the metric term j=bj/by indeed show

that the BBL transport decreases as the slope increases, while
the isopycnal curvature term remains relatively constant
(Fig. 3b). Thus, for small slopes the geometry term does not
make a significant contribution to the total diapycnal trans-
port. However, it may be significant or even dominant for
steep slopes, such as the sides of fracture zone canyons thought
to host much of the mixing that converts Antarctic bottom
water back to lighter waters (Thurnherr et al. 2020). For ex-
ample, the northern wall of the fracture zone canyon shown in
Fig. 5 of Thurnherr et al. (2020) has a very steep slope of

FIG. 3. Structure and properties of the isopycnal curvature con-
tribution to diapycnal transport v g in the one-dimensional boundary
layer solutions. (a) The fraction of diapycnal upwelling in the BBL
due to isopycnal curvature E‘

g /E
‘
=2b

5 tanu arctan(cotu) as a function
of boundary slope tanu. (b) The upslope velocity, or diapycnal
transport per unit x distance along-slope andper unit z (in contrast to
Fig. 2 where the diapycnal velocity is per unit area of an isopycnal)
for slopes of tanu5 1/100 (orange lines), tanu5 1/20 (blue lines), and
tanu5 1/2 (green lines) associated with isopycnal curvature v g (solid
lines) and the buoyancy fluxmagnitude v B (dashed lines). The top of
the BBL is shown in dotted lines.
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roughly 1/2. For this slope the isopycnal curvature term ac-
counts for more than 70% of the diapycnal upwelling in the
BBL (Fig. 3a). This is because for such steep slopes the overall
BBL transport, associated with the convergence of the slope-
normal buoyancy flux, is much weaker. In terms of the de-
composition of v into v B and v g in Eq. (4), the magnitude of
the buoyancy flux at the boundary (associated with only the
along-boundary component) is not significantly less than that
in the interior, meaning that v B (through =B) is much weaker
(green dashed line in Fig. 3b).

d. The impact of reduced SML stratification
The solutions discussed above assume that isopycnals re-

main flat in the SML. However, observations from the Brazil
Basin instead show that the stratification in the SML is reduced
by a factor ;3 relative to the far-field (Callies 2018). To eval-
uate the impact of reduced SML stratification and sloping
isopycnals on the diapycnal transport in the BBL we therefore
compare a solution with the choice SPru0 5 1/2 to the limit
SPru0/‘. Such a solution has a factor of 3 reduction in the
slope-normal buoyancy gradient in the SML [Eq. (20)] along
with a reduced BBL thickness by a factor ;321/4 ’ 0.76 [Eq.
(18), Fig. 4a]. The net diapycnal or upslope transport within the
BBL is reduced by a similar factor of 3 [Eq. (19), the area under
the curve of Fig. 4b]. Throughout most of the BBL the dia-
pycnal velocity and its various components show little change
as the reduction in the convergence of the buoyancy flux as-
sociated with the reduction in bz is compensated by the factor
j=bj21 in Eq. (3) (Fig. 4c). However, in the bottom ;5m the
diapycnal velocity (and its contributions from both v g and v B,

dotted and dashed lines in Fig. 4c) does show a reduction due to
the fact that the upslope component of the buoyancy gradient
by, which does not depend on SPru0, makes a significant con-
tribution to j=bj[which itself is in the denominator of Eq. (3)].
We conclude that while eddy-driven restratification, associated
in the one-dimensional solutions with the parameter Pru0, is an
important process that influences the net diapycnal transport in
the BBL and SML, the BBL thickness and the slope of iso-
pycnals in the SML, with respect to the details of the flow in the
BBL it acts largely as an overall scaling.

e. The impact of the BBL diffusivity structure
The one-dimensional boundary layer solutions discussed

above assume a specific profile for the turbulent diffusivity that
is largely constant within the BBL [Eq. (17), which will be re-
ferred to as kexp in this section, blue line in Fig. 5a]. In contrast,
frictional boundary layer theory suggests that the turbulent
diffusivity and viscosity should reduce linearly toward zero
within a frictional log layer of thickness estimated as ranging
from a few centimeters to a few meters (e.g., Wüest and Lorke
2003; Holtappels and Lorke 2011). In this section we examine
the sensitivity of our results to an alternative choice for the
turbulent diffusivity profile in the BBL where the diffusivity
decays toward zero within the bottom ;2m of the BBL,

kdec 5 kexp(12k
m
e2z/zm) , (29)

where km5 0.95 and zm5 1m (kdec1, orange line in Fig. 5). For
completeness, we also consider a case with zm 5 10m where
the diffusivity decays over a length scale more comparable to

FIG. 4. A comparison of the (a) slope-normal buoyancy gradient bz, (b) upslope velocity, and (c) diapycnal velocity between solutions in
the limit SPru0/‘ (as used elsewhere in the article, blue) and with a Prandtl number chosen such that the SML stratification is reduced by
a factor of 3. Panel (c) (note the reduced vertical scale to focus on the near boundary region) also shows the components of the diapycnal
velocity arising from changes in isopycnal curvature (dashed lines) and buoyancy flux magnitude (dotted lines).
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the BBL thickness (kdec10, green line in Fig. 5). Equation (29)
does not satisfy the criteria needed for the approximate ana-
lytic solution [Eqs. (19), (20)] and thus we must resort to nu-
merical solutions of the boundary layer equations. Following
Callies (2018) we solve the one-dimensional steady-state
boundary layer equations numerically by projecting them onto
2048 Chebyshev polynomials using the software package
Dedalus (Burns et al. 2020). In the exponential diffusivity case
we note that the numerical solution closely matches the ap-
proximate analytic solution used elsewhere in the article (cf.
blue solid and dot–dashed lines in Figs. 5b,c). Parameters used
here are identical to those used in Fig. 2.

The slope-normal buoyancy gradient is slightly enhanced for
the kdec1 case throughout the BBL, which results in a shift in
the upslope transport profile toward the boundary and a slight
reduction in the BBL depth (cf. orange and blue lines in
Figs. 5b,c). Upwelling transport is strongly enhanced in the
bottom ;2m due to the convergence of the slope-normal
buoyancy flux associated with the reduction in diffusivity.
This has a knock-on effect throughout the rest of the BBL as
the total upwelling transport across the BBL must remain the
same. While overall these changes across the majority of the
BBL are not large, the differences in the diffusivity near
the boundary have a more dramatic influence on the diapycnal
velocity, and its various components, within the bottom 5m
(Figs. 5d,e, note the focused vertical scale). The larger near-
boundary slope-normal buoyancy gradient shifts the diapycnal
velocity profile peak to within half a meter of the boundary (cf.
solid orange and blue lines in Fig. 5d) and significantly reduces
the contribution of the isopycnal curvature term v g (cf. solid
orange and blue lines in Fig. 5e). The diapycnal velocity as-
sociated with changes in the buoyancy flux magnitude v B now
dominates the total diapycnal velocity (cf. orange dotted and
solid lines in Fig. 5d). However, the convergence of the
buoyancy flux associated with the decay in the diffusivity in the

bottom ;2m now contributes significantly to the upward dia-
pycnal velocity (v k, orange dotted line in Fig. 5e), in contrast to
the kexp case where v k drove a very weak downward diapycnal
velocity throughout the BBL (e.g., green line in Fig. 2b).
Increasing the length scale over which the diffusivity decays
to a significant fraction of the BBL thickness results in a further
increase in the BBL stratification, shifts the upslope velocity
profile closer to the boundary and further decreases the mag-
nitude of the diapycnal velocity (cf. green and orange lines
in Fig. 5).

4. Comparison with a well-mixed boundary layer
In this section we compare the stratified diffusive one-

dimensional BBL to the fully mixed BBL structure of MF17.
The isopycnal structure assumed in MF17 consists of an inte-
rior with constant stratification N2 and flat isopycnals lying
above a BBL where isopycnals are perpendicular to the
boundary. In the slope-normal coordinate system this corre-
sponds to

›b

›z

MF17

5

&
N2 cosu, for z.HBBL ,

0, for z,HBBL ,
(30)

where by 5 N2 sinu, as in the one-dimensional solution. The
BBL thicknessHBBL, now an externally imposed parameter, is
chosen to be the same as in the one-dimensional solution,
corresponding once again to the change between diapycnal
upwelling in the BBL and downwelling above. Visually com-
paring the isopycnal structure between the two solutions
(Fig. 6a) emphasizes how stratified the one-dimensional solu-
tion is throughout most of the BBL. Consequently, the area of
an isopycnalwithin theBBL ismuch larger in the one-dimensional
solution than in the MF17 mixed layer.

To compare the diapycnal transport we will assume that at
and above the height of the top of the BBL the diffusivity is the

FIG. 5. A comparison of the BBL structure between 1D boundary layer solutions using two forms for the diffusivity in the boundary
layer, an exponential decay (blue lines as used elsewhere in the article), and a simple representation of a frictional log layer where the
diffusivity decays toward zero within either;2m (orange lines) or;20m (green lines) of the boundary [see Eq. (29) where zm 5 1m for
kdec1 or zm 5 10m for kdec10]. Otherwise parameters are the same as used in Fig. 2. Shown are the (a) diffusivity, (b) slope-normal
buoyancy gradient bz, (c) upslope velocity, and (d),(e) diapycnal velocity and its components from numerical solutions to the one-
dimensional boundary layer equations [note the differing vertical scale for (d) and (e)]. The thin dotted lines in (a)–(c) mark the top of the
BBL. The approximate analytic solution in the exponential diffusivity case used elsewhere in the article is also shown in (b) and (c) (dot–
dashed lines, see section 3a).
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same in the MF17 solution as it is in the one-dimensional
boundary layer solution [Eq. (17)]. However, in the MF17
mixed layer the buoyancy flux is no longer related to the local
buoyancy gradient. Instead, diapycnal transport is achieved
by a nonlocal buoyancy flux in the slope-normal direction with
magnitudeB that is assumed to decay linearly through the BBL
(orange line in Fig. 6b). The maximum in the buoyancy flux at
the top of the BBL is determined by matching to the interior
solution (i.e., the diffusivity at that height multiplied by the
buoyancy gradient). This is slightly weaker than the peak

buoyancy flux in the one-dimensional solution because of the
small enhancement in bz at the top of the BBL in that solution
(cf. dashed blue and orange lines in Fig. 6b).

While both solutions show diapycnal upwelling in the BBL
and downwelling above, the structure of the transport is quite
different (Fig. 6c). Diapycnal upwelling within the MF17
mixed layer is constant (as the linear buoyancy flux leads to
uniform buoyancy gain), while in the 1D solution it is focused
in the lower portion of the BBL. The diapycnal velocity v
(diapycnal transport per unit area of an isopycnal) in theMF17

FIG. 6. A comparison of the BBL structure between the 1D boundary layer solution
(blue lines) and the MF17 bottom mixed layer (MF17, orange lines) for a slope of 1/100.
(a) Isopycnals, where the dashed black line indicates the top of the BBL. Note the highly
exaggerated aspect ratio. (b) Themagnitude of the turbulent buoyancy fluxB (solid lines) and
the buoyancy gradient multiplied by the near-bottom diffusivity k0bz (dashed lines). (c) The
upslope velocity or diapycnal transport per unit x and z.
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mixed layer is in fact much larger than the one-dimensional
solution, due to the division by the small uniform upslope
buoyancy gradient [Eq. (3)]. However, the area of an isopycnal
within the MF17 mixed layer is much smaller than in the one-
dimensional solution, meaning that the net BBL diapycnal
transport is similar between the two solutions (being deter-
mined solely by themaximum in the buoyancy flux at the top of
the BBL).

Another notable feature of the MF17 mixed layer is that the
transition between diapycnal upwelling and diapycnal down-
welling at the top of the BBL is discontinuous. However,
overall the structure of the diapycnal transport outside of the
BBL is similar in the two solutions.

5. Upslope variability
The solutions discussed previously did not vary in the

upslope direction. In those solutions, where there are no
upslope variations in the buoyancy flux through the term dF/db
in Eq. (14), diapycnal upwelling always occurs over some layer
near the boundary due to the convergence of the slope-normal
component of the buoyancy flux [first term in Eq. (14)]. How
large would dF/db have to be to reverse the sign of E and
therefore remove the upwelling? Upslope variations in F can
occur through variations in the turbulent diffusivity, in the
buoyancy gradients or in topography. In this section we discuss
this question by presenting a simple scaling argument where F
is assumed to vary over some characteristic upslope scale Dy,
but otherwise the structure of the steady-state one-dimensional
boundary layer solution is maintained.

For simplicity we will work with the one-dimensional
solution where the diffusivity is assumed constant in the
slope-normal direction. The area-integrated buoyancy flux
along an isopycnal below the top of the BBL (i.e., where
z5HBBL 5 p q21

0 ) is given by

FBBL[ F(pq21
0 )5

ððpq21
0

0

k0j=bj
j=bj
b
y

dz dx , (31)

5

(

k0N
2 cosu cotu

ðpq21
0

0

[12r(z)]2dz1k0pq
21
0 N2 sinu

)ð
dx ,

(32)

5 k0N
2q21

0 sinu

'
cot2u

(
p 2 2e2p 2

3

4
e22p 2

5

3

)
1 p

*ð
dx ,

(33)

’ k0N
2 cosupq21

0 cotu(1:4p 21 1 tan2u)

ð
dx , (34)

where r(z)5 e2q0z(sinq0z1 cosq0z) and the numeric factor
inside the brackets multiplying cot2u in Eq. (33) is close to
1.4. Equation (34) reveals that FBBL is equal to the slope-
normal buoyancy flux per unit area at the top of the BBL,
k0N

2 cosu, times a fraction of ’ 1.4 p 21 (tan2u is small for
small slopes) of the lateral area of the BBL, pq21

0 cotu
Ð
dx. If

FBBL were to vary over a characteristic upslope distance of Dy
through, for example, the diffusivity k0 reducing to zero over
that distance, then

dF

db
;
FBBL

b
y
Dy

’
1:4k0q

21
0 cot2u

Dy

ð
dx , (35)

where we have dropped the small parameter tan2u. To prevent
any net diapycnal upwelling across the BBL, Dy must be suf-
ficiently small such that dF/db given by Eq. (35) is the same size
as the first term inEq. (14), yielding the requirement (where we
ignore the slight increase in bz at the top of the bound-
ary layer),

dF

db
;2

ðB ! ẑ
b
y

+++++
z5pq21

0

dx; k
0
cotu

ð
dx , (36)

0Dy; 1:4q21
0 cotu , (37)

That is, FBBL would have to vary over a distance similar to half
(1.4p 21 ’ 0.45) of the lateral thickness of the BBL pq21

0 cotu.
For a slope of tanu 5 1/100 and for the parameters in Fig. 2
where q21

0 ’ 14m, this corresponds to 2 km. This is in fact an
overestimate of Dy, as if k were to vary over this scale then the
calculation of FBBL in Eq. (34) is no longer valid as it assumes
that k is constant over each isopycnal in the boundary layer.1

Such a rate of upslope variation in the time-averaged turbulent
buoyancy flux, whether arising from variations in the buoy-
ancy gradients or diffusivity, may be quite rapid if it must
arise from a change in the large-scale characteristics of the
turbulence (e.g., the topographic roughness or the back-
ground stratification).

A similar scaling argument to that in Eq. (37) can be per-
formed for the mixed layer BBL of MF17. In this case, the
buoyancy flux at the top of the BBL is similar but FBBL is
different. Within the MF17 BBL isopycnals are perpendicular
to the boundary, and thus only the component of the buoyancy
flux parallel to the boundary contributes to FBBL. This buoy-
ancy flux per unit area is k0by, however, the area of an isopycnal
in theMF17 BBL is much smaller, beingHBBL

Ð
dx5 pq21

0

Ð
dx.

Therefore, for the MF17 BBL,

FBBL 5 pq21
0 k0N

2 sinu

ð
dx MF17 BBL. (38)

This is a factor of ;tan2u smaller than FBBL in the one-
dimensional boundary layer case [Eq. (34)]. Therefore, MF17
were correct to neglect the FBBL term in the buoyancy budget
given their assumed isopycnal geometry. However, their model
of the BBL as a fully mixed layer may not be appropriate for
the real ocean.

It should be noted that in the scaling calculations presented
above such upslope variations in the turbulent buoyancy
flux would create a significant convergence of the upwelling

1Alternatively, Eq. (34) would be correct if k was instead a
function of b. However, in this case the downwelling associated
with dFBBL/db would come from the strong dependence of k on b
and z in the upper part of the BBL. Thus this region would effec-
tively become part of the SML where the buoyancy flux decreases
with height, rather than the BBL and thus the BBL would simply
become narrower.
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diapycnal transport in the BBL, resulting in expulsion of fluid
along isopycnals into the SML. Exchanges of fluid between the
SML and BBL have been discussed by a number of authors
(e.g., McPhee-Shaw 2006; Kunze et al. 2012;Winters 2015; Dell
and Pratt 2015; Holmes et al. 2018) and would be expected to
further alter the stratification and, potentially, the charac-
teristics of the turbulence [e.g., Winters (2015) observe the
expulsion of layers of high turbulence out of the boundary
layer into the interior]. These changes would then be ex-
pected to feedback on the diapycnal transport in the BBL,
but it remains unclear how such changes will manifest once
approaching a steady state.

For the specific case of upslope variations in topography
Dell and Pratt (2015) have shown that the dominance of up-
slope transport in the BBL can be overwhelmed for sufficiently
large and rapid corrugations in a large-scale topographic slope.
While they do not specifically discuss diapycnal transport,
they do show that inertial overflows (where the near-bottom
flow can be directed down the local bottom slope) can occur
when the slope variations associatedwith corrugations are larger
than the background topographic slope (e.g., their Fig. 11).
However, once again these downslope flows are localized to
lateral scales of order the horizontal scale of the boundary layer
thickness and their solutions still show sustained upward trans-
port when averaged over these corrugations.

6. Discussion
The one-dimensional boundary layer solutions examined in

this article are idealized and smooth relative to turbulent near-
bottom fields taken from highly sampled observations (e.g.,
van Haren 2017) or from high-resolution simulations (e.g.,
Winters 2015; Ruan et al. 2019). It is not yet clear whether the
specific conclusions made above that depend on the structure
of the one-dimensional solution would be expected to hold
when averaging over this spatial and temporal complexity.
Observations rarely show the reduction in the stratification (or
dissipation rate) near the boundary that the one-dimensional
solutions produce (e.g., vanHaren 2017; Thurnherr et al. 2020),
although there are some exceptions (e.g., Kunze et al. 2012).
This seems to suggest that oceanic BBLs are often too thin
to be resolved by existing microstructure measurements,
highlighting the need for a future field campaign that can
measure buoyancy fluxes and isopycnal structure from the
;500-m scale of the SML down to a distance of meters from
the boundary over the range of time-scales present in the
turbulent flow.

One important question that remains to be addressed is the
nature of the averaging required to convert measurements
made in a complex, time-dependent turbulent near bottom
flow field into a sensible measure of diapycnal buoyancy and
mass fluxes. Most studies take advantage of the identity in
Eq. (9) to convert the area-integral of the diapycnal velocity
[Eq. (8), which includes a potentially convoluted area inte-
gral as well as the problematic division by j=bj] to a more
tractable volume integral of the buoyancy flux convergence
over the volume bounded by two isopycnals [e.g., Eq. (10),
Ferrari et al. 2016; de Lavergne et al. 2016]. In large-scale
contexts information on the spatial structure of the diapycnal

transport is then typically lost. In a more local context where
the properties of the BBL turbulence itself are of interest, a
mixed buoyancy-space physical-space diagnostic may be more
useful. Such a diagnostic is obtained by retaining the depen-
dence on height-above-bottom h in Eq. (10) by integrating the
buoyancy flux convergence only up to h, while still following
the temporal and spatial variability of isopycnals below this
height (as shown by the gray region in Fig. 1). Application of
Eq. (10) to highly resolved simulations or near-bottom turbu-
lence measurements (e.g., Winters 2015; van Haren 2017)
could prove useful in investigating the spatial structure of near-
bottom diapycnal transport.

7. Summary
In this article we have examined the structure of diapycnal

upwelling within a series of idealized abyssal BBLs. Conclusions
can be stated as follows:

1) Net diapycnal upwelling is favored adjacent to the bound-
ary due to the strong convergence of the slope-normal
buoyancy flux there [first term in Eq. (14)]. Only variations
in the BBL buoyancy flux along the boundary [second
term in Eq. (14)] over distances of order the lateral width
of the BBL (or equivalently the vertical thickness of the
BBL times the inverse boundary slope) seem able to
prevent this upwelling.

2) In one-dimensional boundary layer theory the diffusive
buoyancy flux must peak in well-stratified fluid (i.e., the
stratification cannot be reduced much below that in the
SML). This peak corresponds to the transition between
boundary diapycnal upwelling and interior diapycnal
downwelling and thus much of the layer experiencing di-
apycnal upwelling (defined in this article as the BBL) must
be well stratified. This indicates that alternative defini-
tions of the BBL based purely on the stratification (as
commonly used in the literature) may not be useful for
identifying transitions in diapycnal transport.

3) In addition to variations in the diffusive buoyancy flux
magnitude, the curvature of isopycnals also contributes to
diapycnal transport. In the one-dimensional solutions this
curvature term is only significant close to the boundarywhere
isopycnals are curved (Fig. 2) and is sensitive to variations in
the diffusivity very close to the boundary (Fig. 5). It makes
only a small contribution to net upwellingwithin the BBL for
small slopes but may be significant near steep slopes such as
the walls of fracture zone canyons (see Fig. 3).

4) The well-stratified one-dimensional BBL, in which dia-
pycnal upwelling is strongest in the lower portion (where
the stratification is weakest), contrasts with the mixed-BBL
model of MF17 where diapycnal transport is uniform. The
diapycnal velocity is larger in the mixed-BBL model of
MF17, but the net diapycnal transport is similar as the area
of an isopycnal is smaller.

Acknowledgments. We thank Jörn Callies and an anony-
mous reviewer for useful comments. We gratefully acknowl-
edge support from the Australian Research Council through
Grant FL150100090.

NOVEMBER 2020 HOLMES AND MCDOUGALL 3263

D
ow

nloaded from
 http://journals.am

etsoc.org/jpo/article-pdf/50/11/3253/5014396/jpod200066.pdf by Trevor M
cD

ougall on 04 N
ovem

ber 2020



APPENDIX A

An Alternative Derivation of Eq. (14)
This appendix contains an alternative derivation of Eq. (14)

following the method of MF17. The volume budget for the
region dR(b, h, t) in Fig. 1 is

›

›t

ððð

dR(b,h,t)
dV5

ðð

A(b2db,h,t)
v dS2

ðð

A(b,h,t)
v dS

2
ðð

dA(b,h,t)
w dS (A1)

wherew is the velocity in the positive slope-normal direction z. The
buoyancy budget of the same region (following Eq. A2 ofMF17) is

›

›t

ððð

dR(b,h,t)
b0 dV5

ðð

A(b2db,h,t)
b0v dS2

ðð

A(b,h,t)
b0v dS2

ðð

dA(b,h,t)
wb0 dS,

1
ðð

A(b2db,h,t)
B ! n̂ dS2

ðð

A(b,h,t)
B ! n̂ dS2

ðð

dA(b,h,t)
Bz dS , (A2)

where here we have used b0 to denote the three-dimensional
buoyancy field as opposed to the specific buoyancy value b.
The term n̂ is the isopycnal normal. Note that in the first
and second terms on the RHS of Eq. (A2) b0 can be taken
out of the integral as it is equal to b 2 db and b, respec-
tively. This is an advantage of using a control volume
bounded by isopycnals which have a single buoyancy

value. An alternative choice of control volume, bounded
for example by vertical, horizontal or slope-normal lines
on its upper and lower edge, would be more difficult to
work with for this reason. Note that the second and third
last terms in Eq. (A2) were of negligible magnitude when
applied to the well-mixed BBL of MF17. Subtracting b
times Eq. (A1) from Eq. (A2) yields

›

›t

ððð

dR(b,h,t)
(b0 2b) dV52db

ðð

A(b2db,h,t)
v dS2

ðð

dA(b,h,t)
w(b0 2 b) dS

1
ðð

A(b2db,h,t)
B ! n̂ dS2

ðð

A(b,h,t)
B ! n̂ dS2

ðð

dA(b,h,t)
Bz dS . (A3)

Dividing Eq. (A3) by db, realizing that along the surface dA(b,
h, t), dS/db5 dx/by and taking the limit db/0 yields Eq. (14).

APPENDIX B

The Average Height of BBL Upwelling
Much of the diapycnal upwelling in the one-dimensional

solution occurs in the bottom portion of the BBL (e.g., blue
line in Fig. 3b). This can be evaluated more quantitatively by
computing the diapycnal-transport weighted height defined by

z[

ð

b

zv ds
ð

b

v ds
. (B1)

For the case of a constant diffusivity this is easy to evaluate
[using Eq. (20) in the limit SPru0/‘],

z5

ð‘

0

zb
zz
dz

ð‘

0

b
zz
dz

, (B2)

5 2q0

ð‘

0

ze2q0z sinq0z dz , (B3)

5q21
0 . (B4)

Thus, the bottom p 21 of the BBL accounts for half the BBL
transport. Note that this calculation also includes the small
amount of diapycnal downwelling that arises in the constant
diffusivity case because of the slight increase in bz at the top of
the BBL.

APPENDIX C

Mathematical Expressions for the Geometric
Contributions to Diapycnal Transport in the

One-Dimensional Solutions
Expressions for the various geometric diapycnal velocity

terms discussed in section 2b in the y–z coordinate sys-
tem are

v j=bj5
k

j=bj3
(b2

z bzz
1 2b

y
b
z
b
yz
1b2

y byy
) , (C1)

v
=2b

5
k

j=bj(bzz
1b

yy
) , (C2)

v
g
5

k

j=bj3
(b2

ybzz
2 2b

y
b
z
b
yz
1b2

zbyy
) , (C3)

v
k
5
k
z
b
z
1 k

y
b
y

j=bj , (C4)

with v B 5 v j=bj1 v k. In the one-dimensional solutions ky, byy,
and byz are all zero.
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Integrating these diapycnal velocities into the far field yields
the contribution of each term to the net diapycnal transport.
Beginning with the diffusivity term v k,

E‘
k 5

ðð‘

0

v
k

j=bj
b
y

dz dx , (C5)

5
ðð‘

0

k
z
b
z

b
y

dz dx , (C6)

5 cotu
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0

k
z
[12 r(z)] dz dx , (C7)

52cotu
k0 2 k‘

11 (q0d̂)
21 1

1

2
(q0d̂)

22

ð
dx . (C8)

where r(z)5 e2q0z(sinq0z1 cosq0z). The contribution of vari-
ations in the buoyancy gradient v =2b then follows

E‘
=2b

5 E‘ 2 E‘
k 5 cotu

k0 1k‘

'
(q0d̂)

21 1
1

2
(q0d̂)

22

*

11 (q0d̂)
21 1

1

2
(q0d̂)

22

ð
dx .

(C9)

In the limit q21
0 " d̂ these reduce to Eqs. (24) and (25). For

the isopycnal curvature term,

E‘
g 5

ðð‘

0

v
g

j=bj
b
y

dz dx , (C10)

5 b
y

ðð‘

0

k
b
zz

b2
z 1b2

y

dz dx , (C11)

52
ðð‘

0

kr0 cotu

cot2u(12 f )2 1 1
dz dx . (C12)

With variable k this integral cannot be performed analytically.
However, v g is only significant in the bottom of the BBLwhere
k ’ k0 (assuming q21

0 " d̂ also ensures this). With this ap-
proximation, noting that d/dz[arctan(z)] 5 (1 1 z2)21,
Eq. (C12) reduces to Eq. (26).
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