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ABSTRACT

Hochet and Tailleux (2019), in a comment on Holmes et al. (2019), argue that under the incompressible

Boussinesq approximation the ‘‘sum of the volume fluxes through any kind of control volume must integrate

to zero at all times.’’ They hence argue that the expression inHolmes et al. (2019) for the change in the volume

of seawater warmer than a given temperature is inaccurate. Here we clarify what is meant by the term

‘‘volume flux’’ as used in Holmes et al. (2019) and also more generally in the water-mass transformation

literature. Specifically, a volume flux across a surface can occur either due to fluid moving through a fixed

surface, or due to the surface moving through the fluid. Interpreted in this way, we show using several ex-

amples that the statement from Hochet and Tailleux (2019) quoted above does not apply to the control

volume considered in Holmes et al. (2019). Hochet and Tailleux (2019) then derive a series of expressions for

the water-mass transformation or volume flux across an isotherm G in the general, compressible case. In the

incompressible Boussinesq limit these expressions reduce to a form (similar to that provided in Holmes et al.

2019) that involves the temperature derivative of the diabatic heat fluxes. Due to this derivative, G can be

difficult to robustly estimate from ocean model output. This emphasizes one of the advantages of the ap-

proach of Holmes et al. (2019), namely, G does not appear in the internal heat content budget and is not

needed to describe the flow of internal heat content into and around the ocean.

We thank Hochet and Tailleux (2019) for their com-

ment and interest in our paper.We believe that confusion

has arisen here through a difference in interpretation of

the term ‘‘volume flux’’ in the context of a control volume

that is neither fixed in space nor follows the fluid motion.

We start with a kinematic definition of the total flux of

volume across a surface defined by a constant value of

some property Q that will later be taken as potential

temperature (e.g., Groeskamp et al. 2019),

G5

ð
›V
(v2 v

b
) � n̂ dS . (1)

In Eq. (1) ›V denotes the surface defined by a constant

value of Q, (v2 vb) � n̂ is the dia-surface velocity, being

the difference between the motion of the fluid (v) and

the motion of the surface itself (vb), n̂ is a normal to the

surface, and dS is an area-element on the surface. We

take G as our definition of ‘‘volume flux across the
Corresponding author: Ryan M. Holmes, ryan.holmes@

unsw.edu.au

AUGUST 2019 CORRES PONDENCE 2195

DOI: 10.1175/JPO-D-19-0139.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:ryan.holmes@unsw.edu.au
mailto:ryan.holmes@unsw.edu.au
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Q surface.’’ With this definition, it is clear that the

volume flux depends not only on the motion of the

fluid but also on the motion of the surface. Critically, a

nonzero volume flux across the surface can occur even

in the absence of any fluid motion if the surface itself

moves through the fluid (i.e., v5 0 but vb 6¼ 0). We be-

lieve this is the main point of difference between our

perspective and that ofHochet andTailleux (2019)—they

interpret a volume flux as only occurring because of

fluid motion [as clear from the discussion above their

Eq. (4)], whereas we have not made that assumption.

To illustrate this point further, we consider the vol-

ume budget of a general, potentially time-dependent,

volume V(t). The volume V(t) can be defined in terms of

an integral of a volume element dV,

V5

ð
V
dV . (2)

Taking the time derivative,

›V
›t

5
›

›t

�ð
V
dV

�
, (3)

5

ð
›V
v
b
� n̂dS , (4)

where in the second line we have used the Leibniz

integral rule to relate the change in volume to the

movement of its bounding surface ›V(t) through the

motion of the points on that bounding surface vb
and the normal to that bounding surface n̂. Now

the problem with Eq. (4) of Hochet and Tailleux

(2019) when applied to a general volume is clear;

›V/›t is determined by the movement of the vol-

ume’s bounding surface vb, which is in general not

equal to the fluid velocity v. Hochet and Tailleux

(2019) may have had in mind the case of a con-

trol volume whose boundaries are fixed in three-

dimensional space. In this case vb 5 0 and ›V/›t5 0

by construction (even if in the compressible caseÐ
›Vv � n̂ dS 6¼ 0). Another example to consider is that

of a material volume, say Vmat, bounded by a mate-

rial surface that follows the motion of the fluid such

that vb 5 v. In this case,

›V
mat

›t
5

ð
›Vmat

v
b
� n̂ dS , (5)

5

ð
›Vmat

v � n̂ dS , (6)

5

ð
Vmat

= � v dV , (7)

where in the last line we have used Gauss’s theorem. If

the fluid were incompressible then = � v vanishes, mean-

ing that in an incompressible Boussinesq fluid any ma-

terial volume is conserved.

We now return to the specific volume considered in

Holmes et al. (2019),

V(Q, t)5

ððð
Q0(x,y,z,t).Q

dV, (8)

defined as the volume of the ocean warmer than some

temperature Q bounded by the Q isotherm and the

ocean surface. This volume is neither fixed in space, nor

is it a material volume. Volume fluxes can occur across

the surfaces bounding this volume, the Q isotherm and

the ocean surface, that are not linked solely to the mo-

tion of the fluid at those surfaces. This is demonstrated

by two examples in Fig. 1. Figure 1a examines the case

where a motionless (v5 0 everywhere) incompressible

ocean is uniformly heated through penetrating short-

wave radiation, resulting in a deepening of the Q iso-

therm (vb , 0), a nonzero volume flux across that

isotherm G(Q, t). 0, and an increase in the volume

V(Q, t). The nonzero dia-surface velocity (or in this case

diathermal velocity) associated with the nonzero G can

only occur in the presence of diabatic processes (in

Fig. 1a, warming via penetrating shortwave radiation),

which result in a change in the temperature of constit-

uent fluid particles. In Holmes et al. (2019) these dia-

batic processes are provided by the convergence of heat

fluxes associated with vertical mixing, numerical mixing,

or surface forcing, as expressed by Eq. (14) of Holmes

et al. (2019) [or Eq. (32) ofHochet and Tailleux 2019]. In

contrast, there is no volume flux across the surface de-

fined by the initial position of the Q isotherm (black

dashed line in Fig. 1a), as this surface is fixed in time and

the fluid is motionless.

It is important to note that the ocean surface is also

neither fixed in space or time, nor a material surface in

the presence of nonzero surface mass fluxes. Non-

breaking surface gravity waves drive undulations in the

free surface, which do not drive any volume fluxes across

the sea surface and therefore do not change the volume

V (i.e., vb � n̂5 v � n̂ in this case). However, in the pres-

ence of precipitation fluid does move across the surface,

resulting in an increase in sea surface height and in the

volume V (provided that the precipitatedwater is warmer

than Q, Fig. 1b).

In conclusion, providing that the phrase ‘‘volume flux

across a surface’’ is defined by Eq. (1), meaning that a

nonzero volume flux can occur either because of fluid

motion across a fixed surface or the movement of the

surface through the fluid itself, then we do not believe
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there is any confusion or ambiguity in Holmes et al.

(2019) (or indeed Walin 1982). The volume considered

in Holmes et al. (2019) is neither fixed in space nor a

material surface, and thus its time variability cannot be

linked solely to the motion of the fluid itself. For this

reason, we do not believe it is necessary to regard the

volume V as the Boussinesq mass. Of course, if the in-

compressible Boussinesq assumption is not made, then

(as stated in the second footnote on p. 144 of Holmes

et al. 2019) it is more natural to consider the mass, rather

than volume, enclosed by the isotherm and the surface.

With compressible dynamics, as discussed by Hochet

and Tailleux (2019), changes in the mean density of the

region can result in changes in its volume without any

fluxes of mass through the bounding surface. However,

whether the incompressible Boussinesq approximation

is made or not, we emphasize that one of the advan-

tages of the approach used in Holmes et al. (2019) is that

one does not have to consider the water-mass trans-

formation term G to understand the flow of internal heat

content within the ocean. The transformation G does

not appear in the internal heat content budget consid-

ered by Holmes et al. (2019), which instead depends

directly on the surface heat flux and diffusive fluxes of

heat across isotherms. This is an advantage as G is a

differentiated quantity that can be more difficult to

robustly estimate from model simulations.
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FIG. 1. Two examples demonstrating that the bounding surface ›V of the volume V(Q, t) defining all fluid warmer

than a given temperature Q and within the ocean (orange volume) is neither fixed in space nor a material surface.

Both cases consider an incompressible motionless ocean (v5 0 everywhere). (a) The ocean is warmed uniformly

due to penetrating shortwave radiation. TheQ isothermmoves downward as the fluid warms, meaning that there is

a volume flux across the Q isotherm G(Q, t). 0 and V(Q, t) increases. However, there is no volume flux across the

fixed surface defined by the initial position of theQ isotherm (dashed line). (b) Precipitation, where the precipitated

water is warmer than Q, moves across the ocean surface and adds to the volume V.
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