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ABSTRACT

Mixing layers near sloped topography in the abyss are thought to play a critical role in the global over-

turning circulation. Yet the behavior of passive tracers within sloping boundary layer systems has received

little attention, despite the extensive use of tracer observations to understand abyssal circulation. Here, we

investigate the behavior of a passive tracer released near a sloping boundary within a flow governed by one-

dimensional boundary layer theory. The spreading rate of the tracer across isopycnals is influenced by factors

such as the bottom-intensification of mixing, the dipole of upwelling (in the boundary layer) and downwelling

(in the outermixing layer), and along-isopycnal diffusion. For isolated near-boundary tracer releases, the bulk

diffusivity, proportional to the rate of increase of the variance of the tracer distribution in buoyancy space, is

much less than what would be expected from averaging the diapycnal diffusivity over the tracer patch. This

stems from the presence of the bottom boundary that prevents tracer diffusion through it. Furthermore, when

along-isopycnal diffusion is weak, the boundary tends to drive the tracer up the slope toward less dense fluid

on average due to asymmetries between boundary layer and interior flows. With strong along-isopycnal

diffusion this upslope movement is reduced, while at the same time the average diapycnal spreading rate is

increased due to a reduced influence of the bottom boundary. These results have implications for what can be

learned about the characteristics of mixing near sloping boundaries from past and future tracer-release

experiments.

1. Introduction

The transport of tracers within the ocean plays an

important role not only in ocean dynamics, thermody-

namics, and biogeochemistry, but also as a method with

which to observe the ocean and infer circulation

properties. Because, by its nature, tracer transport in-

tegrates over both spatial and temporal scales, it allows

us to measure the large-scale, integral impact of a range

of smaller-scale processes that are difficult to observe

directly. However, in order to correctly interpret and

use tracer measurements, a good understanding of

tracer transport and its relation to circulation proper-

ties is needed.

Tracer transport has been particularly useful for un-

derstanding the dynamics of the ocean’s deep over-

turning circulation, where small-scale turbulent mixing

plays a key role (Watson and Ledwell 2000). Since the

pioneering study of Munk (1966) and the realiza-

tion that mixing in the interior is generally weak (e.g.,

Gregg 1989; Ledwell et al. 1993), mixing near the

ocean’s boundaries has been thought to play a critical

role in closing the global diapycnal circulation (Armi

1978; Ivey 1987b; Wunsch 1970; Phillips 1970; Thorpe

1987; Garrett 1991; Munk and Wunsch 1998; Wunsch

and Ferrari 2004). Observations suggest that turbu-

lent mixing is bottom intensified due to internal wave

breaking within the stratified fluid above the boundary

layer (Toole et al. 1994; Polzin et al. 1997; Ledwell et al.

2000; St. Laurent et al. 2012; Waterhouse et al. 2014).

The bottom intensification of mixing within so-called

‘‘abyssal mixing layers’’ implies a downward mass

transport across isopycnals in what some authors have
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termed the stratified mixing layer (SML; McDougall

and Ferrari 2017). To balance the formation of dense

waters at high latitudes there must therefore be a

somewhat larger upwelling transport within thin bot-

tom boundary layers (BBLs) along the sloping seafloor

where the turbulent buoyancy flux converges (Kunze

et al. 2012; de Lavergne et al. 2016, 2017; Ferrari et al.

2016; McDougall and Ferrari 2017). The requirement

for net upwelling and the near compensation between

the net diapycnal transports in the BBL and SML

imply a complex balance between factors such as to-

pographic geometry (McDougall and Ferrari 2017;

Holmes et al. 2018), variations in stratification (Ferrari

et al. 2016; Callies and Ferrari 2018; Banyte et al. 2018),

and the lateral structure in the intensity of turbulent

mixing near the ocean floor (Kunze 2017a,b). How this

balance is achieved at both global and regional scales

remains an open question that observations of tracer

behavior may help to answer.

Field tracer release experiments (TREs) have pro-

vided many insights into the dynamics of diapycnal

ocean circulation. TREs have shown that mixing away

from boundaries is weak (Ledwell et al. 1993; Ledwell

1998), and highlighted the importance of strong bound-

ary mixing for closing basin-scale budgets (Goudsmit

et al. 1997; Inall 2009; Ledwell and Bratkovich 1995). The

Brazil Basin TRE (BBTRE; Ledwell et al. 2000) in par-

ticular demonstrated the presence of intensified mixing

in the abyss above the rough seafloor of the Mid-Atlantic

Ridge, corroborating microstructure measurements

(Polzin et al. 1997). The BBTRE tracer was released

well above the ocean bottom, and its centroid showed a

tendency to descend across isopycnals in the eastern

basin consistent with the expected diapycnal down-

welling in the SML. However, the observations close to

the boundary suggested that in ridge canyons the tracer

moves upslope, likely toward less dense waters. These

observations pointed to the importance of the near

boundary region, though BBTRE was not designed to

study this region.

The importance of intense boundary mixing was fur-

ther highlighted by the Diapycnal and Isopycnal Mixing

Experiment in the Southern Ocean (DIMES; Ledwell

et al. 2011; Watson et al. 2013). DIMES also exposed

a common discrepancy whereby diffusivities inferred

from tracer measurements often exceed those esti-

mated frommicrostructure surveys. These discrepancies

are often attributed to sampling issues (e.g., Wüest et al.
1996; Voet et al. 2015) and can be reconciled if the full

temporal and spatial distribution of the tracer is taken

into account (Mashayek et al. 2017). Studies such as

Mashayek et al. (2017) and Ledwell et al. (2000) high-

light the importance of tracer-boundary interactions,

but do not discuss the details of tracer transport within

any particular boundary-driven flow. Idealized studies

have examined near-boundary tracer dispersion above a

horizontal boundary (e.g., Saffman 1962; Csanady 1969).

Here we examine a similar problem near a sloping

boundary.

Our tracer study will be conducted in the context of

one-dimensional boundary layer theory (e.g., Wunsch

1970; Phillips et al. 1986; Thorpe 1987; Garrett 1990).

The theory considers the one-dimensional problem of

flow over a uniform slope driven by an isotropic diffu-

sivity. To satisfy the no-flux boundary condition, iso-

pycnals slope down as they approach the boundary,

leading to a buoyancy-driven upslope flow in a weakly

stratified BBL where friction is important (Garrett et al.

1993). When the diffusivity is bottom intensified a cor-

responding downslope flow appears in the outer portion

of the abyssal mixing layer (the SML). Recently, Callies

(2018) has shown that for realistic abyssal ocean pa-

rameters boundary layer theory predicts a much weaker

stratification than typically observed. He suggests that

restratification by submesoscale eddies, generated by

baroclinic instability of the resulting flow field (Wenegrat

et al. 2018), is necessary to maintain the stratification and

therefore permit significant near-boundary water-mass

transformation. Here, we overcome this limitation of the

one-dimensional theory by using a large viscosity in the

along-slope momentum equation, which acts as a simple

parameterization for eddy-driven restratification (see

section 2; e.g., Greatbatch and Lamb 1990).

Eddies, along with tides, intrusions, and other pro-

cesses, can also drive strong along-isopycnal tracer

transports (e.g., Ivey 1987a; McPhee-Shaw 2006; Wain

and Rehmann 2010; Winters 2015; Dell and Pratt 2015).

This along-isopycnal exchange (here captured at first

order by an along-isopycnal tracer diffusivity) provides

one means in which the strong boundary mixing can

communicate with the interior.

In this article we aim to address the following ques-

tions: 1) What processes within abyssal mixing layers

are most important for determining tracer transport?

2) Will a tracer be transported toward lighter (upslope)

or heavier (downslope) density classes, on average,

when released near a sloping boundary? 3) What can be

inferred about the properties of mixing and circulation

from bulk measurements of the tracer cloud dispersion?

To approach these questions we analyze the behavior

of a passive tracer released within a flow governed by

one-dimensional boundary layer theory (described in

section 2). The tracer evolves in two dimensions due

to the effects of diapycnal diffusion, isopycnal diffu-

sion, and advection (section 3). We introduce an an-

alytical framework based around the tracer moments
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in buoyancy space (the tracer center of mass and

variance) to understand the contribution of different

processes to tracer dispersion (sections 4–6). We find

that the presence of the boundary can slow the rate of

diapycnal tracer dispersion below that expected from

averaging the diapycnal diffusivity over the tracer

patch. Due to asymmetries between the upslope BBL

and downslope SML flows (the BBL upwelling being

strong and narrow compared to the more diffuse SML

downwelling), and the partitioning of the tracer be-

tween them (near-boundary tracers readily occupy

the whole BBL but a smaller fraction of the SML), the

tracer tends to move upslope on average. The extent

of upslope movement and tracer dispersion depends

on the initial release position of the tracer, as well as

the decay scale of bottom-intensified mixing and

along-isopycnal diffusion (section 7). Our results have

implications not only for our understanding of tracer

behavior near the ocean floor (section 9), but also for

what can be learned about ocean dynamics from field

TREs (section 8).

2. Boundary layer theory

The idealized two-dimensional tracer release experi-

ments will be performed within a flow governed by one-

dimensional boundary layer theory. In this section we

briefly review the key results from this theory required

for our tracer study. For a more detailed derivation the

reader is referred to Garrett (1990, 1991) and Callies

(2018). We consider steady flow above a bottom with

uniform slope tanu and use a coordinate system aligned

with the bottom (i.e., z is bottom normal with origin at

the boundary, y is upslope, and x is along slope; Fig. 1).

Everything is uniform in the upslope and along-slope

directions except pressure and buoyancy (and in the

next section the tracer). Buoyancy is characterized by a

constant far-field vertical stratification N2

›b

›z
/N2 cosu, as z/‘, (1)

›b

›y
5N2 sinu, all z , (2)

where b is the buoyancy field relative to a reference

density r0. The steady, rotating equations of motion for

this system are (e.g., Garrett et al. 1993)

2fV cosu5
d

dz

�
n
u

dU

dz

�
, (3)

fU cosu52
1

r
0

›P

›y
1 b sinu1

d

dz

�
n
y

dV

dz

�
, (4)

052
1

r
0

›P

›z
1 b cosu , (5)

N2V sinu5
d

dz

�
k
›b

›z

�
, (6)

where U(z), V(z) are the along-slope and upslope

velocities; nu(z), ny(z) are along-slope and upslope

eddy viscosities (which may differ for reasons discussed

shortly); k(z) is an eddy diffusivity; P(y, z) is the pressure

field; and f is the (vertical) Coriolis parameter. These

equations can be combined into (e.g., Garrett 1991)

d2

dz2

�
n
y

d2C

dz2

�
1

�
f 2 cos2u

n
u

1
N2 sin2u

k

�
C

5N2 sinu cosu1
f 2 cos2u

n
u

k
‘
cotu , (7)

where k‘ is the far-field diffusivity and the scalar stream-

function C(z) is given by dC/dz 5 V with C(0) 5 0 and

C/k
‘
cotu, as z/‘ . (8)

For constant diffusion, nu(z)5 nu0, ny(z)5 ny0, k(z)5
k0 (5k‘), the solution to Eq. (7) with no-slip boundary

conditions is characterized by a BBL of reduced

stratification and upslope flow (Wunsch 1970; Thorpe

1987; dashed black lines in Fig. 2). There is an along-

slope flow in the interior in the direction opposite to

Kelvin wave propagation, or upwelling-favorable in a

bottom-Ekman sense (Garrett et al. 1993). The BBL

width is O (q21
0 ), where

FIG. 1. A schematic illustrating the two-dimensional slope-

normal coordinate system used in this article. The boundary has a

constant slope of tanu. The coordinate system is aligned with the

slope such that z is normal to the slope, y points up the slope, and

x is along slope. The density field is characterized by a constant

stratification N2 within the SML, while isopycnals slope down

within the weakly stratified BBL. One-dimensional boundary layer

theory yields an upslope velocity profile V(z) that is characterized

by strong upwelling across isopycnals in the BBL with weaker

downwelling across isopycnals in the SML. The tracer C is released

at some point in the domain and evolves in the two spatial di-

mensions y, z with time t.
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q4
0 5

N2 sin2u

4Pr
y0
k2
0

[11 (SPr
u0
)21] , (9)

S21 5 f2 cos2u/N2 sin2u is the inverse slope Burger num-

ber, and Pru05 nu0/k0, Pry05 ny0/k0 are Prandtl numbers.

For typical abyssal parameters of N2 5 1026 s22,

f 5 1024 s21, nu0 5 ny0 5 k0 5 1023m2 s21, tanu 5 1/400

then S21 5 1600 is large and the BBL thickness corre-

sponds to an Ekman layer thickness of q21
0 5 4:5m.

In this article we will instead focus on the case where

the diffusivity is bottom intensified with form

k5 k
‘
1 (k

0
2 k

‘
)e2z/d , (10)

where k0 is the diffusivity near the boundary and d is a

decay scale. For the parameter space of interest here

the BBL thickness q21
0 is much smaller than the dif-

fusivity decay scale d. Following Callies (2018), for

q0d � 1 we can construct an approximate analytic

solution to Eq. (7) for the bottom-intensified case by

patching together a solution in the BBL, where the

mixing coefficients can be assumed to be constant and

equal to their near-boundary values nu0, ny0, and k0,

to a solution in the interior, where the influence of

friction through the fourth derivative term in Eq. (7)

can be neglected. This procedure is presented in

appendix A.

However, as shown by Callies (2018) [see Eqs. (A4)

and (A7) in appendix A], for the typical large inverse

slope Burger number S21 and order one Prandtl num-

ber regime in the abyssal ocean such a solution predicts

very weak stratification over the abyssal mixing layer.

Callies (2018) attributes this weak stratification to

the lack of representation of baroclinic instability

and its associated eddy-driven restratification in the

one-dimensional system. A realistically stratified one-

dimensional solution requires small values of the pa-

rameter (SPru0)
21 (see appendix A for more details)

and can therefore be recovered using a large Pru0.

Such a choice of large vertical momentummixing in the

along-slope momentum equation can be physically in-

terpreted as a parameterization for restratification by

baroclinic eddies based on the thickness-weighted aver-

age formalism (Rhines and Young 1982; Greatbatch and

FIG. 2. (left) Upslope velocity V and (right) buoyancy frequency ›b/›z from the approxi-

mate analytic solution [Eq. (11)] for a constant diffusivity k 5 k0 (dashed black) and an

exponentially decaying isotropic diffusivity k5 k‘1 (k02 k‘)e
2z/d (colored). Parameters are

N25 1026 s22, k05 1023 m2 s21, k‘ 5 1025 m2 s21, and d5 500m. The orange curves and the

constant k case use a slope of tanu5 1/400, where the BBLwidth q21
0 5 28:3m, while the blue

curves use a slope of 1/100, where q21
0 5 14:1m. Stratification in the constant k case is identical

to that in the exponential case. The open circles indicate the effective vertical grid resolution

of the Dedalus simulations for 192 Chebyshev modes.

2672 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 49



Lamb 1990; Gent andMcWilliams 1990; Gent et al. 1995;

McDougall and McIntosh 2001). For simplicity, and

to avoid the need to resolve eddies or include an ex-

plicit Gent and McWilliams (1990) type parame-

terization, throughout most of this article we will

consider the limit (SPru0)
21 / 0 obtained for large

Pru0. This choice assumes that eddies maintain the

stratification in the SML at its far-field value.1 In

section 7c and appendix C we discuss the impact

of reduced stratification in the SML through a non-

zero (SPru0)
21.

Note that the representation of eddy-driven restrati-

fication through enhanced vertical momentum mixing

should have less impact on the BBL solution, which is

determined by nongeostrophic frictional turbulent

boundary layer physics. The eddy-driven restratifica-

tion and frictional boundary layer processes can be

conveniently isolated (at least in our two-dimensional

context) by enhancing only the along-slope viscosity.

Thus we maintain the choice Pry0 5 1 in the upslope

momentum equation.

With these parameter choices, the full one-

dimensional solution is given by [taking the limit

(SPru0)
21 / 0 in Eqs. (A4) and (A7) in appendix A]

C5 k cotu[12 e2q0z(cosq
0
z1 sinq

0
z)] , (11)

›b

›z
5N2 cosu[12 e2q0z(cosq

0
z1 sinq

0
z)] . (12)

As for the constant diffusivity solution there is a BBL of

thickness O (q21
0 ) with weak stratification and upslope

flow (solid lines with circles in Fig. 2).2 Outside the

BBL the vertical stratification is equal to the far-field

value N2 and there is a weak downslope flow which

largely compensates the upwelling within the BBL

[the imbalance between SML and BBL transports is

governed by Eq. (8)]. These compensating upwelling

and downwelling flows are equivalent to the water-

mass transformation dipole discussed recently by a

number of authors (e.g., de Lavergne et al. 2016;

Ferrari et al. 2016; McDougall and Ferrari 2017). It is

this flow that will be used to advect and diffuse a

passive tracer in a two-dimensional y–z plane, as

discussed in the next section.

3. Two-dimensional tracer dispersion in a
one-dimensional slope flow

a. The tracer conservation equation

We set up a two-dimensional tracer advection–

diffusion problem in the one-dimensional boundary

layer flow discussed in the previous section. That is, we

look for the distribution of a tracer C(y, z, t) (where

C has concentration units of tracer m22) which varies in

the upslope and slope-normal directions (Fig. 1) given

an initial distribution C(y, z, 0) and a tracer conserva-

tion equation

›C
›t

52= � FC , (13)

where the tracer flux

FC 5VC2 k=C2A
H
K

I
� =C . (14)

Parameter FC has three components; an advective flux

associated with the velocity V 5 [V(z), 0] from bound-

ary layer theory [V(z) is given by the z derivative of

Eq. (11)] and diffusive fluxes associated with a small-

scale isotropic diffusivity k(z) and an along-isopycnal

diffusivityAH. The along-isopycnal diffusion is specified

using the symmetric second rank tensor (Redi 1982)

K
I
5

1

j=bj2
"

b2
z 2b

y
b
z

2b
y
b
z

b2
y

#
, (15)

where the subscript on b indicates differentiation. The

coefficients of KI are determined using the buoyancy

gradients bz 5Bz 1 b0
z 5N2 cosu1 b0

z and by 5 By 5
N2 sinu split into background (Bz and By) and pertur-

bation components, where from Eq. (12)

b0
z 52N2 cosue2q0z(cosq

0
z1 sinq

0
z) . (16)

This formulation of the tracer equation is consistent with

boundary layer theory [i.e., if b replaces C then Eq. (13)

reduces to Eq. (6)].

b. Numerical model setup

The tracer conservation equation (13) cannot be

solved analytically in the general case (although we will

consider simplified cases that can be solved analytically)

and so we resort to numerical simulations. We use the

spectral code Dedalus (Burns et al. 2019; http://dedalus-

project.org/) in the rotated y, z coordinates (Fig. 1) with

periodic boundary conditions in y.We consider a control

parameter set with a y-domain length Ly 5 1500km, a

slope of a5 1/400 (roughly the western side of the Mid-

Atlantic Ridge) and a z-domain height of Lz 5 3000m.

1 This parameter choice is equivalent to using nonrotat-

ing boundary layer theory due to the parameter dependence

(SPru0)
21 ; f 2/nu0.

2 Note that due to the choice (SPru0)
21 / 0 the BBL thickness

q21
0 is increased from 4.5 to 28m for the typical abyssal parameters

considered above.
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The far-field stratification N2 5 1026m2 s21. The diffu-

sivity will either be bottom-intensified with an exponen-

tial profile [Eq. (10)] or constant, with base parameters

d 5 500m, k0 5 1023m2 s21 and k‘ 5 1025m2 s21. For

those simulations with no along-isopycnal diffusion

(AH 5 0) we use 384 Fourier modes in y and 192 Che-

byshev modes in z, corresponding to an average Dy ;
4km and an average Dz 5 15m. The Chebyshev basis

allows finer resolution of the small-scale z gradients in the

BBL (see Fig. 2). Equation (13) is solved implicitly in

time using a time step of 8 days. However, because of

small-scale variations in the along-isopycnal tensor co-

efficients [Eq. (15)] near the boundary, those simulations

with nonzero along-isopycnal diffusion were instead

performed with 576 modes in y and 768 modes in z and a

time step of 4 days. The simulationsmatch analytic results

where such results are obtainable (e.g., section 5). The

results are robust to numerical choices, as confirmed by

doubling the number of modes in z and running with a

time step 4 times smaller, which gave almost identical

results (not shown).

4. Bulk diffusivity and tracer moments

The simplest and most common method to quantify

the overall tracer dispersion rate in different coordinates

is through the rate of increase of the variance of the

tracer distribution. A Gaussian distribution of tracer

spreading in one-dimension (s) due to a constant diffu-

sivity k evolves as

C(s, t)5A
s
0

s
e2(s2m)2/2s2

, (17)

s2(t)5s2
0 1 2kt , (18)

where t is time, A is a constant, s2 is the variance with

initial value s2
0, and m is the centroid or center of mass.

The variance increases linearly with time at a rate of 2k.

Thus for any tracer distribution, whichmay be spreading

due to complex advection–diffusion processes in multi-

ple dimensions, we can define an equivalent or bulk

diffusivity in any dimension s in terms of the rate of in-

crease of the variance ss (also see Wüest et al. 1996;
Goudsmit et al. 1997)

ks
bk 5

1

2

›s2
s

›t
. (19)

Furthermore, by defining a domain averaging operator

over the dimension s

h*is [
ð‘
2‘

*ds , (20)

we can write both the variance ss and the center

of mass ms in terms of the s moments of the tracer

distribution

m
s
[

hsCis
hCis , (21)

s2
s [

hs2Cis
hCis 2m2

s , (22)

where hsCis and hs2Cis are the first and second moments,

and hCis is the zeroth moment that quantifies the (con-

served) total amount of tracer. The moments provide a

useful framework that can be used to understand aspects

of the tracer dispersion analytically (e.g., Saffman 1962;

Young et al. 1982). They will be used in later sections to

derive expressions for the evolution of the tracer cen-

ter of mass and bulk diffusivity in terms of the various

advective and diffusive tracer fluxes.

A similar calculation can also be applied in buoy-

ancy space, to obtain a bulk diapycnal diffusivity kb
bk

(or just kbk). In this case a mean stratification pro-

file N2, which in our two-dimensional context will

be the constant [in the limit (SPru0)
21 / 0] interior

stratification, is also required in order to convert

the spreading rate into the units of a diffusivity. We

define

k
bk
[

1

N4

1

2

›s2
b

›t
, (23)

where

m
b
5

hbCi
hCi , (24)

s2
b 5

hb2Ci
hCi 2m2

b , (25)

and the averaging operation in our general two-

dimensional context occurs over the full tracer distri-

bution in the two spatial dimensions y and z

h*i[ hh*iyiz 5
ð‘
0

ð‘
2‘

* dy dz . (26)

The bulk diffusivity [Eq. (23)] will be used to char-

acterize the overall rate of spreading of the tracer across

buoyancy surfaces. However, it should be emphasized

that kbk should not necessarily be interpreted directly

as a diffusivity, as such an interpretation masks the po-

tentially complex processes that are leading to the

spreading of that tracer distribution in the first place

(here, two-dimensional advection and diffusion). Com-

parisons of kbk to the actual isotropic diffusivity k will
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prove useful, as is commonly done for field TREs where

microstructure measurements are also available (e.g.,

Ledwell et al. 2000; Watson et al. 2013; Mashayek et al.

2017). We will also compare kbk to the diffusivity cal-

culated using a one-dimensional model commonly ap-

plied to field data (Ledwell and Watson 1991; Ledwell

1998; see appendix B).

5. Boundary restriction: Tracer behavior in z

We begin by examining the behavior of the tracer in

the slope-normal coordinate z. Integrating the two-

dimensional tracer conservation equation [Eq. (13)]

across all y yields

›hCiy
›t

5
›

›z

�
Kz›hCiy

›z

�
, (27)

whereKz 5 k1AHb
2
y/j=bj2 and the boundary conditions

are Kz(›hCiy/›z 5 0Þ at z 5 0 and hCiy / 0 as z / ‘.
Thus in the slope-normal coordinate z the tracer dif-

fuses according to a one-dimensional diffusion equation

that does not depend on the upslope velocity V. We

are not aware of any analytic solutions to Eq. (27) for

the case where k is exponential, AH is nonzero, and

there is a boundary at z 5 0 (see Zamani and

Bombardelli 2014, and references therein). However,

whenKz is a constant (where here for simplicity we set

Kz 5 k with k constant) a solution is easy to obtain

and, despite the simple governing equation, shows

some interesting behavior as a consequence of the

boundary at z 5 0.

a. Constant diffusivity

When k is constant and AH 5 0 the tracer evolution

for an initial Gaussian distribution with center of mass at

z 5 m0 and spread s0 (provided the initial tracer distri-

bution is isolated from the boundary, s0 � m0) is given

by the sum of two Gaussians centered at z 5 m0 and

z 5 2m0

hCiy(z, t)5A
s
0

s
[e2(z2m0)

2/2s2

1 e2(z1m0)
2/2s2

] , (28)

where

s2(t)5s2
0 1 2kt . (29)

Due to the symmetry about z 5 0, this solution satisfies

the no flux boundary condition at z 5 0, while the in-

dividual Gaussians satisfy the one-dimensional diffusion

equation without a boundary. This analytic solution

matches the numerical two-dimensional solution aver-

aged in y (shown at three different times by the orange

curves in Fig. 3a).

The center of mass, variance, and bulk diffusiv-

ity derived from the z moments of this solution

[defined for z . 0 using Eq. (26) for the domain av-

erage] are

m
z
5

hzCi
hCi 5

2sffiffiffiffiffiffi
2p

p e2m2
0
/2s2

1m
0
Erf

�
m
0ffiffiffiffiffiffiffiffi
2s2

p
�
, (30)

s2
z 5

hz2Ci
hCi 5m2

0 1s2 2m2
z , (31)

kz
bk 5

1

2

›s2
z

›t

5 k

�
12

2

p
e2m2

0
/s2

2
2m

0ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p Erf

�
m
0ffiffiffiffiffiffiffiffi
2s2

p
�
e2m2

0
/2s2

�
.

(32)

At early times, when mz � s the center of mass is

stationary mz 5 m0, s
2
z 5s2 and the bulk diffusivity is

equal to the actual diffusivity kz
bk 5 k. However, as time

increases, namely once the tracer encounters the

boundary such that s ; mz, the center of mass moves

away from the boundary, eventually increasing like

the square root of time mz ;
ffiffi
t

p
(orange line in

Fig. 3b). As a result, the rate of increase of variance sz

reduces [due to the m2
z term in Eq. (31), orange line in

Fig. 3c], and the bulk diffusivity is reduced below k (cf.

orange solid and dashed lines in Fig. 3c). Hence the

effect of the boundary is to reduce the bulk diffusivity

by limiting downward tracer spreading. In the limit of

long time

kz
bk /

�
12

2

p

�
k’ 0:36k, as t/‘ , (33)

meaning that the bulk diffusivity is reduced by more

than a factor of 2. This is perhaps surprising, since it may

be thought that the boundary prevents the spreading of

half of the Gaussian tracer distribution. However, once

the tracer encounters the boundary it no longer spreads

like a half-Gaussian because its reflection spreads into the

region z . 0, resulting in an effective accumulation of

tracer near the boundary.

b. Bottom-intensified diffusivity

When instead the diffusivity is bottom intensified

(k‘ 6¼ k0, with AH 5 0) the solution cannot be obtained

analytically. However, the influence of the boundary

on the tracer diffusion can still be understood by

deriving equations for the evolution of the zmoments

directly from the tracer conservation equation (this

technique will also be used in later sections to ana-

lyze the tracer behavior in buoyancy coordinates).
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Multiplying Eq. (27) by z and integrating over the

domain

hCi›mz

›t
5

›hzCi
›t

5

�
z
›

›z
(kC

z
)

�
, (34)

5

�
›

›z
(zkC

z
)

�
1 h2kC

z
i , (35)

5 h2kC
z
i , (36)

where in the second line we have used the chain rule

and the third line we have used the boundary condi-

tion at z 5 0 to eliminate the first term. Equation (36)

simply states that the tracer center of mass will move

according to the domain-averaged tracer flux. Fur-

thermore, using the chain rule to move the z de-

rivative from C to k and the boundary condition to

rewrite h›z(kC)i in terms of the tracer concentration

on the boundary yields

hCi›mz

›t
5 k

0

ð‘
2‘

C(y, 0, t) dy1 hk
z
Ci . (37)

The first term in Eq. (37) exposes the ‘‘boundary effect’’

discussed above: the boundary prevents the tracer flux in

the negative z direction (once tracer accumulates there)

and thus the flux in the positive z direction dominates,

driving the center of mass away from the boundary. A

z-dependent diffusivity can also drive net tracer move-

ment through the second term in Eq. (37). For a

bottom-intensified diffusivity, this term enhances the

downward tracer diffusion below the initial tracer

patch driving the center of mass toward the boundary

(dotted blue line in Fig. 3b). However, this downward

motion is transient and the boundary effect dominates

once enough of the tracer accumulates on the boundary

(solid blue line in Fig. 3b).

Note that the isotropic diffusivity k should strictly

go to zero over some finite (rather than infinitesimal)

distance approaching the boundary, which would remove

FIG. 3. Behavior of the tracer in z for a constant diffusivity k 5 k0 (orange lines) and an exponential diffusivity

(blue lines). (a) The tracer distribution as a function of z integrated in y, hCiy, at days 0, 48, and 192. (b) Time series

of the center of mass mz (solid lines) and the time-integrated contribution of the diffusivity gradient to center-of-

mass changes [dotted lines, obtained by time-integrating the second term on the rhs of Eq. (37), and adding the

initial center ofmassmz(0)]. Note that the contribution of the boundary term [(first term on rhs of Eq. (37)] accounts

for the increase in mz beyond the effect of the diffusivity gradient. (c) The bulk diffusivity kz
bk from the tracer

variance (solid lines), the in situ diffusivity (dashed lines), and the contribution to kz
bk from the diffusivity gradient

(dotted lines). Note again that the boundary term [second term in Eq. (40)] is not shown and accounts for the

downturn in kz
bk.
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the boundary effect term in Eq. (37). However, such a

change in the diffusivity near the boundary plays a

very similar role to the boundary effect by preventing

tracer fluxes toward the boundary. If the tracer con-

centration is assumed to be constant over this layer in

which the diffusivity reduces near the boundary then

the component of the second term in Eq. (37) associ-

ated with this change in k reduces to the same form as

the first term, with k0 replaced by the diffusivity at the

top of the layer.

An equation for the second z tracer moment can be

derived using a procedure analogous to that employed

for Eq. (36)

›hz2Ci
›t

5 2h2kC
z
zi . (38)

The bulk diffusivity or rate of change of the variance

is then

kz
bk 5

h2kC
z
(z2m

z
)i

hCi , (39)

that is, kz
bk is given by the domain-averaged tracer flux

weighted by its distance from the center of mass z2 mz.

Furthermore, by shifting the z derivative from the C to k,

and absorbing the factor (z 2 mz)

kz
bk 5

hkCi
hCi 2

m
z
k
0

hCi
ð‘
2‘

C(y, 0, t) dy1 h(z2m
z
)Ck

z
i

hCi .

(40)

Equation (40) clearly shows that the bulk diffusivity kz
bk

is not what would be expected from simply averaging the

isotropic diffusivity k over the tracer patch (or the in situ

diffusivity hkCi/hCi, dashed lines in Fig. 3c; also see

Mashayek et al. 2017). Instead, the boundary signifi-

cantly reduces this spreading rate, once tracer encoun-

ters the boundary (second term on the rhs of Eq. (40),

compare solid and dashed lines in Fig. 3c). This occurs

because the boundary prevents tracer spreading in the

negative z direction, and constricts the tracer to remain

closer to its center of mass [Eq. (39)]. On the other hand,

the vertical diffusivity gradient, when present, drives a

modest enhancement of the bulk diffusivity through the

last term in Eq. (40) (dotted blue line in Fig. 3c). It

should be noted that the terms in Eqs. (40) and (37) are

not independent; each term affects the tracer distribu-

tion C on which they are all dependent.

6. Diapycnal spreading: Tracer behavior in b

Though the upslope velocity V does not influence the

spreading of the tracer in the slope normal direction z, it

does affect the tracer spreading rate in the upslope di-

rection y and across buoyancy surfaces. The two-

dimensional evolution of tracer patches released at

z0 5 d/25 250m in flows with constant (Figs. 4a–c) and

bottom-intensified (Figs. 4d–f) diffusivities clearly show

the impacts of the boundary layer flow. With a constant

diffusivity there is only upslope flow within the BBL.

This flow drives tracer up the slope after which it diffuses

vertically out of the BBL, forming a characteristic up-

slope tracer tongue (Figs. 4a–c). The center of mass

(with upslope position my 5 hyCi/hCi) moves up the

slope, at a rate determined by the tracer-weighted

velocity

›m
y

›t
5

hVCi
hCi , (41)

[obtained by multiplying Eq. (13) by y and integrating

over the domain], and slightly away from the boundary

(mz increases, see closed circles in Figs. 4a–c). Thus, the

advective tracer transport in the BBL is significant de-

spite its thinness. The expanding tracer patch continues

to supply tracer to the BBL through downward diffu-

sion, accounting for the large amount of tracer advected

upward within the BBL.

When the diffusivity is instead bottom intensified

(Figs. 4d–f), the upslope spreading of tracer is reduced

due to both the restriction of diffusion to the region near

the boundary and the presence of downslope transport

in the SML (cf. closed circles in Figs. 4c and 4f). Due to

the shear in the SML velocity, the expanding interior

tracer patch acquires a tilt.

The evolution of the tracer concentrations binned

into buoyancy classes also indicates a strong up-

ward net motion of the tracer distribution, in both

cases (orange and blue distributions in Fig. 5a), re-

flected in the upward motion of the center of mass

(solid lines in Fig. 5b). In the following subsections

we develop a framework based on the tracer moments

to evaluate the contributions of various advective

and diffusive tracer fluxes to the diapycnal tracer

spreading.

a. Advective and diffusive tracer fluxes and the
buoyancy budget constraint

Following the same procedure used in section 5 for the

one-dimensional case, we obtain the following equations

for the buoyancy moments of the tracer

›hbCi
›t

5 hFC � =bi , (42)

›hb2Ci
›t

5 2hbFC � =bi , (43)
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k
bk
5

1

N2hCih(b2m
b
)FC � =bi , (44)

wheremb 5 hbCi/hCi. Equation (42) shows that the tracer
center of mass moves across isopycnals if the domain-

averaged diapycnal tracer flux is nonzero. The rate of

change of the tracer variance in buoyancy space, pro-

portional to kbk [Eq. (44)], is positive if the diapycnal

fluxes move tracer on average away from the tracer

center of mass mb. Noting that the along-isopycnal flux

drops out yields contributions from diapycnal advection

and isotropic diffusion

›hbCi
›t

5 hCV � =bi2 hk=C � =bi , (45)

k
bk
5

1

N4hCih(b2m
b
)CV � =bi

2
1

N4hCih(b2m
b
)k=C � =bi . (46)

Equations (45) and (46) can be further simplified by

noting that from the buoyancy equation [vector form of

Eq. (6)]

V � =b52= � (2k=b) . (47)

Multiplying by C, integrating over the domain and using

the chain rule and boundary conditions,

hCV � =bi52hk=C � =bi . (48)

Thus the domain-averaged advective and diffusive

tracer fluxes are identical, such that Eq. (45) can be

written

›hbCi
›t

522hk=C � =bi . (49)

This surprising result, that advection and diffusion

both drive tracer on average in the same direction (de-

spite their influence on buoyancy being exactly oppo-

site), comes about because the tracer is localized. This

localization implies that the tracer gradient =C must

change sign, weighting the diapycnal diffusive flux such

that tracer is diffused diapycnally on average in the same

direction as it is advected diapycnally.

Similarly, multiplying Eq. (47) by C(b2mb) and in-

tegrating over the domain yields

h(b2m
b
)CV � =bi5 h(b2m

b
)C= � (k=b)i , (50)

52hk=b � =[C(b2m
b
)]i , (51)

52h(b2m
b
)k=b � =Ci2 hkCj=bj2i .

(52)

Using Eq. (52), Eq. (46) for the bulk diffusivity can be

rewritten as

FIG. 4. The evolution of a tracer patch released z0 5 d/25 250m above the bottom (open white circle) with (top) a constant diffusivity

and (bottom) a bottom-intensified diffusivity. Tracer concentrations are shown at days (a),(d) 400, (b),(e) 800, and (c),(f) 1600. The

position of the tracer center of mass (my,mz) is shown with a solid circle, and the position of the center of mass of tracer located only on the

boundary is shown with a cross. Note that the aspect ratio is strongly exaggerated.
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k
bk
52

2

N4hCihk=b � =[C(b2m
b
)]i1 1

hCi

*
kCj=bj

2

N4

+
.

(53)

If the tracer is mostly outside of the BBL where j=bj2 ’
N4 (true except in the case of reduced SML stratifica-

tion considered in section 7c and appendix C) then

the additional second term is the in situ diffusiv-

ity hkCi/hCi. Equations (42)–(53) hold generally for

any tracer when integrated over a region with zero

sources or boundary tracer fluxes. Equations (49) and

(53) also hold even if the buoyancy field is changing

in time.

b. Boundary and diffusivity gradient contributions to
center-of-mass motion

We now split the buoyancy gradient field from

boundary layer theory [Eqs. (1) and (2)] into its

background =B 5 (By, Bz) 5 N2(sinu, cosu) and

perturbation =b0 5 (0, b0
z) [Eq. (16)] components.

Then, using the chain rule and the boundary condi-

tions, the center-of-mass tendency [Eq. (45)] can be

expressed as

hCi›mb

›t
5B

y
hVCi1 k

0
B

z

ð‘
2‘

C(y, 0, t) dy

1B
z
hCk

z
i2 hkC

z
b0
zi , (54)

exposing the influence of the boundary (second term on

the rhs, referred to as the boundary effect) and the dif-

fusivity gradient (third term on the rhs) discussed earlier

in the one-dimensional context [Eq. (37), except here

multiplied by Bz]. The final term is associated with

variations in the buoyancy gradient in the BBL and is

negligible in our context (not shown). The first advective

term, as discussed above, is equal to the sum of the three

other diffusive terms. We can go even further by iden-

tifying the advective tracer fluxes in the BBL and SML

FIG. 5. Buoyancy space tracer behavior for the two runs considered in Fig. 4 with constant diffusivity (orange

lines) and exponential diffusivity (blue lines). (a) The tracer distribution as a function of b at days 0, 192, and 1600.

(b) Time series of the center of mass mb (solid lines), the contribution of the diffusivity gradient to center-of-mass

trends (dotted lines), and the contribution of BBL advection to center-of-mass trends (dashed lines). As discussed

in section 6a, advection and diffusion each contribute half of the total trend, with the boundary term and BBL

advection also making equal contributions. (c) Time series of the bulk diffusivity (solid lines), in situ diffusivity

(dashed lines), and the contribution of the diffusivity gradient to the bulk diffusivity (dotted line). As discussed in

section 6d, the influence of SML advection is equivalent to the diffusivity gradient effect (dotted line), while BBL

advection and the boundary effect account, in equal parts, for the reduction in the bulk diffusivity well below the in

situ diffusivity.
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with the boundary and diffusivity gradient terms

respectively.

c. BBL and SML contributions to center-of-mass
motion

Recall that the approximate analytic solution derived

from one-dimensional boundary layer theory is ob-

tained by combining two solutions (see appendix A);

one for the SML where the diffusivity varies [in the limit

(SPru0)
21 / 0, Eqs. (A3) and (A4)], and one for the

BBL where the diffusivity is constant and equal to k0
[Eq. (A6)]. Therefore,

V
BBL

� =b5 k
0
=2b , (55)

where VBBL 5 (›CBBL/›z)ŷ. Multiplying by C and in-

tegrating as for the derivation of Eq. (48)

hCV
BBL

� =bi52k
0
h=C � =bi

5 k
0
B

z

ð‘
2‘

C(y, 0, t) dy2k
0
hC

z
b0
zi . (56)

Thus, the influence of diapycnal tracer advection in the

BBL onmb is equivalent to the influence of the boundary

term plus a minor correction due to the BBL buoyancy

perturbation. In turn, this implies that diapycnal tracer

advection in the SML is equivalent to the diffusivity

gradient term plus an even smaller correction

hCV
SML

� =bi5B
z
hCk

z
i2 h(k2 k

0
)C

z
b0
zi . (57)

Both Eqs. (56) and (57) match intuition. The boundary

effect drives the tracer center of mass upward in b

whenever there is tracer within the BBL (by limiting

tracer diffusion toward denser fluid), as does the upslope

BBL diapycnal flow. The diffusivity gradient drives the

tracer center of mass toward denser fluid (kz is nega-

tive), as does the downslope SML diapycnal flow.

For a constant diffusivity there is no SML flow or

diffusivity gradient, and so the center of mass moves

toward lighter water due solely to the influence of BBL

advection and the boundary effect, which contribute

equally (orange dashed line in Fig. 5b, which when

multiplied by 2 provides the full center-of-mass evolu-

tion mb, the solid line). In the bottom-intensified case,

both the diffusivity gradient and the downslope SML

transport drive the tracer center of mass downward

initially (dotted blue line in Fig. 5b, which again should

be multiplied by 2 to account for influence of the SML

transport), but the boundary effect and advection within

the BBL quickly dominates driving the tracer toward

less dense fluid on average (solid blue line in Fig. 5b).

d. BBL and SML contributions to the bulk diffusivity

Following the same procedures as for the center of

mass, the bulk diffusivity [Eq. (46)] can be split into

contributions from a number of different processes,

k
bk
5

hkCi
hCi 1

1

N4hCi
	
B

y
h(b2m

b
)VCi1 k

0
B

z

ð‘
2‘

C(y, 0, t)[b(y, 0)2m
b
]dy1B

z
hC(b2m

b
)k

z
i

2 h(b2m
b
)kC

z
b0
zi1B

z
hCkb0

zi


. (58)

As for the simple one-dimensional case considered in

section 5, this equation clearly shows that the bulk dif-

fusivity characterizing the overall spreading rate of

tracer across isopycnals is not simply equal to the tracer-

weighted isotropic diffusivity or in situ diffusivity (first

term on the rhs, compare solid with dashed lines in

Fig. 5c). Instead, there are contributions from advection,

from the accumulation of tracer on the boundary, from

the vertical gradient in the diffusivity and from the BBL

buoyancy perturbation [these last two terms in Eq. (58)

related to b0
z are negligible, less than 5 3 1025m2 s21, in

all cases considered here, although they may be signifi-

cant when b0
z results from squeezing in transient flows

(Wagner et al. 2019)]. Once again, the advective term can

be split into contributions from the BBL and SML, which

identify with the diffusive boundary term and the dif-

fusivity gradient term in Eq. (58), respectively. Using

Eq. (55) in the advective flux term in Eq. (46)

h(b2m
b
)CV

BBL
� =bi5 k

0
h(b2m

b
)C=2bi (59)

52k
0
h=[C(b2m

b
)] � =bi (60)

5 k
0
B

z

ð‘
2‘

C(y, 0, t)[b(y, 0, t)

2m
b
] dy2k

0

�
›

›z
[C(b2m

b
)]b0

z

�
,

(61)

where we have once again used the chain rule and the

boundary conditions. The last term is a minor correction

2680 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 49



dependent on b0
z. In turn Eq. (61) implies that the in-

fluence of SML advection is equal to the diffusivity

gradient effect (plus another minor correction de-

pendent on b0
z).

Equation (58) provides a useful diagnostic for exam-

ining the tracer dispersion. However, the terms are not

mutually independent as they all affect and depend on

the tracer concentration C.
In the case of a constant diffusivity (orange line in

Fig. 5c) the main factor influencing the spreading rate

of the tracer across isopycnals, apart from the in situ

diffusivity, is the boundary effect (and equivalently

BBL advection). While the influence of the boundary

on the center-of-mass motion is always to push the

center of mass toward less dense fluid [the second rhs

term in Eq. (54) is always positive], its influence on

the tracer dispersion rate kbk [second term inside the

curly brackets in Eq. (58)] can have either sign due to the

(b 2 mb) weighting factor. In fact, this term can be fur-

ther manipulated to yield

k
0
B

z

N4hCi
�ð‘

2‘

C(0)b(0) dy2m
b

ð‘
2‘

C(0) dy
�

5
k
0
B

z

N4hCihC(0)i
y(m0

b 2m
b
) , (62)

where C(0) and b(0) are shorthand for the tracer and

buoyancy on the boundary C(y, 0, t) and b(y, 0), and

m0
b 5 hb(0)C(0)iy/hC(0)iy is the centroid buoyancy of the

tracer on the boundary. Thus, the boundary effect will

generally reduce kbk ifm
0
b is at a denser level thanmb (the

usual case, compare closed circles and crosses in Fig. 4).3

Its magnitude depends on the separation between m0
b

and mb and the amount of tracer on the boundary

hC(0)iy. Once again, this boundary effect is equivalent to

the influence of BBL advection and can also be un-

derstood from this perspective; BBL advection will

generally reduce the diapycnal spreading rate as it

moves more tracer toward the center of mass than away

from the center of mass (e.g., see Figs. 4a,d).

The reduction in the bulk diffusivity kbk below the

in situ diffusivity (cf. dashed and solid lines in Fig. 5c)

due to the boundary effect occurs as soon as the tracer

encounters the boundary. The behaviors of the constant

and bottom-intensified diffusivity cases are similar,

apart from the magnitude of the initial, and in situ, dif-

fusivities (cf. blue and orange lines in Fig. 5c). This is

because the influence of SML advection and the diffu-

sivity gradient are weak (dotted blue line in Fig. 5c).

These terms act to drive a modest enhancement of the

diapycnal spreading rate as the diapycnal SML velocity

is divergent around the tracer patch due to the positive

curvature in k (sinceN2 is constant). It is the curvature of

k that matters, despite the appearance of only the first-

derivative of k in Eq. (58), because of the weighting

factor (b 2 mb).

e. Summary

To summarize, the main effect highlighted by these

near-boundary point-release tracer experiments is a

strong reduction in the diapycnal spreading rate, below

that which would be expected from in situ measure-

ments of the isotropic diffusivity averaged over the

tracer patch,4 due to the presence of the boundary which

limits tracer diffusion toward denser water. Accompa-

nying this reduced spreading rate is a tendency for the

overall tracer patch, quantified by its center of mass, to

move up the slope toward less dense fluid. We also

showed that due to the buoyancy budget constraint the

advective and diffusive fluxes have equivalent influences

on the tracer dispersion [Eqs. (49) and (53)], as do their

individual BBL and SML contributions. We will dis-

cuss these results in the context of field TREs in sec-

tion 8. However, in the next section we first examine

the sensitivity of the tracer dispersion to several other

parameters.

7. Sensitivity to other parameters

a. Release location

In the previous two sections we showed that the

presence of the boundary significantly reduces the dia-

pycnal spreading rate of the tracer, and alters the tracer

center-of-mass motion. The time scale over which these

effects appear depends on where the tracer is released.

When released further from the boundary (e.g., at z0 5
3d/4, Figs. 6a–c) the tracer initially spreads according to

the isotropic diffusivity, with enhanced downward dif-

fusion due to bottom-intensification and the downslope

SML flow (orange solid line in Fig. 7b). There is an

initial slight increase in the bulk diffusivity (solid or-

ange line in Fig. 7c before day ;250), due to the fact

that the SML flow is divergent (dotted orange line in

Fig. 7c, which represents the equivalent influence of the

3Of course, bizarre tracer distributions where the tracer is in

contact with the boundary only above the tracer center of mass mb

are possible, if unlikely, in which case the boundary effect would

enhance kbk.

4 Note that this conclusion is not altered if alternative methods

of estimating the in situ diffusivity are considered. For example, the

tracer-gradient weighted diffusivity hkjCzji/hjCzji gives a similar

estimate (not shown) consistent with Mashayek et al. (2017).
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diffusivity gradient). However, once the tracer en-

counters the boundary the diapycnal spreading rate is

significantly reduced.

The reduction in the diapycnal spreading rate occurs

earlier for tracers released closer to the boundary (e.g.,

at z0 5 62.5m, Figs. 6d–f and blue lines in Fig. 7, effec-

tively equivalent to a release at the boundary). While

tracers released very close to the boundary visu-

ally appear to experience more overall dispersion

(cf. Figs. 6f and 6c), most of this dispersion manifests in

the lateral direction (despite the absence of any along-

isopycnal diffusion) with less spreading across buoy-

ancy surfaces (cf. solid blue and orange lines in Fig. 7c).

For the near-boundary release the bulk diffusivity is

initially more than 5 times smaller than the in situ dif-

fusivity (cf. blue solid and dashed lines in Fig. 7c).

Coupled with the large transport of tracer toward

lighter fluid (blue line in Fig. 7b), almost the entire

tracer distribution lies at buoyancies above its initial

buoyancy after;100 days (blue lines in Fig. 7a, also see

Figs. 6e,f). This net movement toward less dense fluid

is a consequence of the upslope BBL flow and the

asymmetric distribution of tracer between the BBL and

SML. The latter asymmetry is due to the boundary,

which tends to trap tracer in the BBL. The net upward

movement of tracer is strongest when the tracer is re-

leased next to the boundary, while tracers released

away from the boundary in the SML experience a net

downward movement (Fig. 8). Field TREs conducted

very close to a sloping boundary may be expected to

show a similar net diapycnal upward movement of

tracer (e.g., Inall 2009). However, in section 7e we show

that the introduction of along-isopycnal diffusion can

limit this upward movement.

b. Topographic slope

Though the position of the initial release point of the

tracer clearly impacts the initial behavior of the tracer,

the slope of the boundary does not in these point release

experiments. Altering the slope of the boundary has a

number of effects on the boundary layer flow. First, it

influences the thickness of the BBL q21
0 , with steeper

slopes having thinner BBLs (a relatively minor effect

due to the fourth-power exponent in Eq. (9), also see

Callies and Ferrari 2018). Second, it alters the strength

of the upslope and downslope boundary layer flows

[linearly, due to the factor of cotu in Eq. (11); also

compare orange and blue solid lines in Fig. 2a and see

Dell and Pratt (2015)]. The change in the upslope and

downslope flow strength arises because the local dia-

pycnal advective flux of buoyancy must remain the

same (as the diffusion has not changed), but the sepa-

ration of buoyancy surfaces in the direction parallel

to the boundary changes. Comparing tracer releases

performed over a slope of 1/100 versus 1/400 shows

significant visual differences in the rate of tracer dis-

persal (Fig. 9). However, the rate of tracer spreading

across buoyancy surfaces is in fact almost identical

FIG. 6. The evolution of tracer patches released (a)–(c) z0 5 3d/45 375m and (d)–(f) z0 5 d/85 62.5m above the bottom (open white

circle) with a bottom-intensified isotropic diffusivity and no along-isopycnal diffusivity. The position of the tracer center of mass (my,mz) is

shown with a closed white circle, and the center of mass on the boundary is shown with a cross.
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(not shown), because the magnitude of the diapycnal

velocity does not change, being set by diffusion. In-

stead, the spacing of buoyancy surfaces in the y direc-

tion (By 5 N2 sinu) increases in proportion to the

decrease in upslope flow (V; cotu), such that the total

advective flux of tracer hCV � =bi5ByhVCi remains the

same. However, this result only holds for cases where

the tracer is released at a single point. When the tracer

is instead released as a layer with significant horizontal

extent (not shown) the slope of the boundary does in-

fluence the spreading rate as it influences the width of

the SML and thus the extent to which the tracer is ex-

posed to strong boundary mixing.

c. Reduced mixing layer stratification

Throughout most of this article we have taken the

limit SPr21
u0 / 0, where eddies are assumed to flatten

isopycnals in the SML and maintain the stratification

there. However, observations from the Brazil Basin

suggest that isopycnals are often sloped in the active

mixing layer and the stratification is reduced (St. Laurent

et al. 2001; Ledwell et al. 2000). Callies (2018)

found that the observed Brazil Basin stratification

was well fitted by the one-dimensional boundary layer

solution for a Prandtl number of 230, yielding SPr21
u0 ’ 2.

This corresponds to a threefold reduction in the SML

stratification [extending out to a distance of d log(k0/k‘)]

(Callies 2018), with a similar reduction in the upslope

FIG. 8. The change in the tracer center of mass in buoyancy space

from its initial buoyancy Dmb 5 mb(t) 2 mb(0) at day 800 as a

function of the initial release height of the tracer above the bottom

boundary.

FIG. 7. Buoyancy space tracer behavior for the two runs considered in Fig. 6, where the tracer is released

z0 5 3d/4 5 375 m (orange lines) and z0 5 d/8 5 62.5 m (blue lines) above the bottom. (a) The tracer

distribution as a function of buoyancy at days 0, 160, and 800. (b) Time series of the center ofmassmb (solid lines),

the contribution of the diffusivity gradient to center-of-mass trends (dotted lines), and the contribution of BBL

advection to center-of-mass trends (dashed lines). (c) Time series of the bulk diffusivity (solid lines), in situ

diffusivity (dashed lines), and the contribution of the diffusivity gradient to the bulk diffusivity (dotted lines).
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transportC [Eq. (A7) in appendix A, where there is also

a small factor of 31/4 modification to the BBL scale q0,

Eq. (9)]. For tracers released near the boundary, which do

not extend into the far-field, this reduction in upslope

transport reduces the upslope spreading of tracer (cf.

Figs. 9d–f and 9g–i) and the net movement of tracer to-

ward lighter fluid (as the upslope buoyancy gradient by
remains the same). The rate of increase of the variance of

the tracer in buoyancy space also reduces, but there is

little effect on the bulk diffusivity if the stratification

normalization factor [Eq. (23)] is instead chosen as the

SML stratification N2/(11 SPr21
u0 ) (not shown). Thus the

slope of the isopycnals (independent of the change inN2)

has only a minor impact on the diapycnal tracer disper-

sion. However, as for the boundary slope above, this may

no longer hold for tracer clouds that extend across the

FIG. 9. (a)–(c) The evolution of tracer patches released z0 5 d/2 5 250m above the bottom (open white circle) as for Figs. 4d–f

(with different axis limits) with a slope of 1/400, d 5 500m and SPr21
u0 5 0. (d)–(f) As in (a)–(c), but with a slope of 1/100. (g)–(i) As in

(a)–(c), but with the vertical stratification in the SML reduced by a factor of 3 through the choice SPr21
u0 5 2. (j)–(l) As in (a)–(c), but with

the diffusivity decay scale reduced to d5 200m. Plots are shown at day (left) 400, (center) 800, and (right) 1600. The position of the tracer

center of mass (my, mz) is shown with a solid white circle, and the center of mass on the boundary is shown with a cross.
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SML into the far-field, such as the BBTRE tracer (see

section 8 and appendix C).

d. Decay scale of bottom-intensified mixing

The tracer dispersion is also sensitive to the decay

scale used for the isotropic diffusivity [d in Eq. (10)].

When the tracer is released at the same distance from

the boundary but this d scale is reduced to 200m (a value

that may be more representative of the Brazil Basin;

St. Laurent et al. 2001; Callies 2018) then the tracer

remains restricted closer to the boundary and the net

upslope movement of the tracer toward lighter buoy-

ancy is reduced (cf. Figs. 9j–l with Figs. 9a–c). This

reduction in the center-of-mass movement in buoy-

ancy space is due to the increase in the vertical gradient

of the isotropic diffusivity kz, or equivalently an in-

crease in the SML transport, that drives more tracer

downward (cf. blue and orange dotted and dashed lines

in Fig. 10b). This increase in the vertical gradient of

the diffusivity also acts to enhance the tracer spread-

ing rate in buoyancy space such that the bulk diffusivity

does not reduce as much as would be expected from

the reduced in situ diffusivity (cf. orange and blue lines

in Fig. 10c).

e. Influence of along-isopycnal diffusion

Finally we consider the impact of along-isopycnal

diffusion on the tracer behavior. Large along-

isopycnal diffusion may be expected in abyssal mix-

ing layers due to processes such as intrusions (e.g.,

McPhee-Shaw 2006) or baroclinic instability setup

by boundary mixing (e.g., Callies 2018; Wenegrat

et al. 2018). Along-isopycnal diffusion can rapidly

mix tracer between the SML and BBL, an effect which

is clear when comparing TREs with large (AH 5
100m2 s21, Figs. 11d–f) and small (AH 5 10m2 s21,

Figs. 11a–c) along-isopycnal diffusivities. The along-

isopycnal diffusivity also appears to influence the

spreading of the tracer in buoyancy space, despite the

inability of along-isopycnal diffusion to directly flux

tracer across isopycnals (Fig. 12). At early times, the

enhanced along-isopycnal diffusion limits the ini-

tial downward motion of the center of mass by mixing

tracer more rapidly into the BBL, enhancing the

FIG. 10. Buoyancy space tracer behavior for the runs considered in Figs. 9a–c and 9j–l where the tracer is released

250m above the bottom and the vertical decay scale of the diffusivity is d 5 500m (orange lines) and d 5 200m

(blue lines). (a) The tracer distribution as a function of buoyancy at days 0, 192, and 1600. (b) Time series of the

center of mass mb (solid lines), the contribution of the diffusivity gradient to center-of-mass trends (dotted lines),

and the contribution of BBL advection to center-of-mass trends (dashed lines). (c) Time series of the bulk diffu-

sivity (solid lines), in situ diffusivity (dashed lines), and the contribution of the diffusivity gradient to the bulk

diffusivity (dotted lines).
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boundary effect (cf. orange and blue solid and dashed

lines in Fig. 12b before day 500). However, at later

times along-isopycnal diffusion limits the motion of

the center of mass up the slope toward less dense

fluid as the tracer is mixed between the regions

of upslope and downslope motion in the BBL and

SML, respectively. In terms of the framework in-

troduced in section 6, the limited upslope motion of

the center of mass arises because of a reduction in

the influence of BBL advection (or equivalently the

boundary effect, compare dashed lines in Fig. 12b

after day 1000), as there is less tracer in contact with

the boundary.

Similarly, the reduction of the influence of the

boundary, or BBL advection, on the tracer distribu-

tion under strong along-isopycnal diffusion results in

an enhanced rate of diapycnal spreading as quantified

by kbk (cf. solid blue and orange lines in Fig. 12c). The

magnitude of the boundary effect responsible for the

reduction in kbk is dependent on two factors [Eq.

(62)]: 1) the amount of tracer on the boundary hC(0)iy
and 2) the buoyancy spacing between the total tracer

center of mass mb and that on the boundary m0
b. Large

along-isopycnal diffusion decreases both of these

factors by moving tracer away from the boundary on

average and by homogenizing the tracer between the

boundary and SML such that m0
b 2mb is reduced (cf.

positions of closed circles and crosses in Fig. 11).

The second of these two factors generally dominates

(not shown).

A secondary effect of along-isopycnal diffusion is to

reduce the in situ diffusivity averaged over the tracer

patch (cf. dashed blue and orange lines in Fig. 12c) by

driving a net lateral movement of tracer toward the

weakly mixing interior. This net lateral movement to-

ward the far-field with along-isopycnal diffusion is once

again due to the presence of the boundary that prevents

tracer transport through it.

The results of these experiments are summarized in

Fig. 13, where three measures of the time-averaged or

cumulative diffusivity up to day 800 are shown for a

range of along-isopycnal diffusivities.5 For all values

of AH the total diapycnal spreading rate of tracer

across isopycnals, as quantified by the bulk diffusivity,

is smaller than the in situ diffusivity (cf. circles and

crosses in Fig. 13). As along-isopycnal diffusion in-

creases the diapycnal spreading rate increases and the

in situ diffusivity decreases. This occurs despite the

inability of along-isopycnal diffusion to directly drive

diapycnal tracer fluxes, due to changes in the tracer

gradients and the degree to which the tracer interacts

FIG. 11. The evolution of tracer patches released z0 5 d/25 250m above the bottom (open white circle) with an exponential diffusivity

for two values of along-isopycnal diffusivity (top) AH 5 10 m2 s21 and (bottom) AH 5 100 m2 s21 at day (a),(d) 400, (b),(e) 800, and

(c),(f) 1600. The position of the tracer center of mass (my, mz) is shown with a solid white circle, and the center of mass on the

boundary is shown with a cross.

5We do not include a similar summary figure for the dependence

of the center-of-mass motion onAH as this depends strongly on the

time scale of interest (cf. blue and orange solid lines in Fig. 12b).
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with the boundary. Finally, a more sophisticated es-

timate of the tracer derived diffusivity discussed in

appendix B, based on a least squares fit to the results

of a one-dimensional advection–diffusion equation,

gives similar results to the bulk diffusivity (cf. tri-

angles and circles in Fig. 13), meaning that if this es-

timate was interpreted as a measure of the in situ

diffusivity it would be an underestimate.

8. Relation to field experiments

Our study has focused on tracer behavior in the im-

mediate boundary region, as opposed to past field

TREs such as BBTRE and DIMES. Nevertheless, it is

useful to discuss our results in the context of these past

experiments.

a. BBTRE

The BBTRE tracer (Ledwell et al. 2000) was released

along a target isopycnal that sat about 1000m above the

bottom of a fracture zone trough. The majority of the

tracer cloud thus lay in the outer SML, although because

of topographic variability some tracer was located much

closer to the boundary (Fig. 4 of Ledwell et al. 2000).

The initial BBTRE dispersion was well modeled with

a one-dimensional advection–diffusion equation and

showed a tendency to move downward toward denser

water (Fig. 2a of Ledwell et al. 2000), consistent with our

results for bottom-intensifiedmixing (e.g., Figs. 6a–c). A

smaller portion of the tracer was also drawn eastward

and more strongly downward toward the MAR bound-

ary. Once significant amounts of tracer came into con-

tact with the boundary Ledwell et al. (2000) point out

that the tracer tended to get mixed back toward lighter

density levels, consistent with the boundary effect pre-

sented here. Ledwell et al. (2000) do not attempt to use a

one-dimensional model for these later periods of

BBTRE, as they suggest it may underestimate the

diffusivity. We have applied such a one-dimensional

model to our idealized near-boundary TREs and found

that it provides a similar estimate of the diapycnal

tracer spreading rate to the bulk diffusivity kbk (see

appendix B), and therefore indeed underestimates the

in situ diffusivity hkCi/hCi. In our case this underesti-

mate is roughly a factor of 3 (Fig. B1). However, the

BBTRE tracer was released in the interior as opposed

FIG. 12. Buoyancy space tracer behavior for the two runs considered in Fig. 11 with along-isopycnal diffusivity

AH 5 10m2 s21 (orange lines) and AH 5 100m2 s21 (blue lines). (a) The tracer distribution as a function of

buoyancy at days 0, 192, and 1600. (b) Time series of the center of mass mb (solid lines), the contribution of the

diffusivity gradient to center-of-mass trends (dotted lines), and the contribution of BBL advection to center-of-

mass trends (dashed lines). (c) Time series of the instantaneous bulk diffusivity (solid lines), in situ diffusivity

(dashed lines), and the contribution of the diffusivity gradient to the bulk diffusivity (dotted lines).
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to near the boundary, and therefore the influences of

the boundary discussed in this article would be ex-

pected to be weaker. Indeed, an idealized TRE based

on BBTRE parameters, discussed in appendix C, shows

weaker boundary effects and the bulk diffusivity is well

approximated by the in situ diffusivity.

b. DIMES

Our results have less immediate applicability to

DIMES, given the topographic complexity and strong

mean flows characterizing the Southern Ocean. In par-

ticular, we note that the order-of-magnitude mismatch

between diffusivities estimated from the DIMES tracer

and microstructure observations cannot be explained

using the physics discussed here. Mashayek et al. (2017)

suggested that this mismatch arose from the enhanced

tracer residence time in the vicinity of near-bottom

mixing hot spots where bottom flows were weak

(which would be associated with a larger value of the

in situ diffusivity hkCi/hCi in our framework). Instead,

the boundary effect discussed in this study would

suggest that in situ estimates should exceed those

obtained from the tracer measurements, and by less

than an order of magnitude.

c. Future near-boundary TREs

While neither BBTRE or DIMES were specifically

designed to study near boundary tracer dispersion, fu-

ture experiments are planned with this aim. The re-

lations derived in this article may help in the analysis of

these experiments. First, the realization that there is

some equivalence between the effects of diapycnal ad-

vection and diffusion on the tracer moments in buoy-

ancy space [e.g., Eqs. (49) and (53), which hold

generally providing boundary tracer fluxes and interior

sources can be eliminated] may allow some calcula-

tions to be simplified. For example, if the change in the

center-of-mass density of the tracer patch DhbCi over a
specified time period (e.g., between two tracer sam-

pling cruises) is measured, then by time-integrating

Eq. (49), using the chain rule, and eliminating the

boundary term

hC= � (k=b)i5DhbCi
2

, (63)

where the overbar indicates a time integral. Equation

(63) allows the convergence of the diffusive buoyancy

flux, or net buoyancy source Db/Dt, averaged over the

tracer patch to be easily obtained.

Second, if detailed information is available (perhaps

as part of a series of surveys of the initial spreading of

tracer) then it may be possible to utilize some of our

relations to better infer properties of the underlying

turbulent diffusivity. For example, if a structure f (~z) of

the turbulent diffusivity as a function of distance above

bottom ~z was assumed (such that k(~z)5 k0f (~z) with

f(0) 5 1, where f (~z) could be, for example, an expo-

nential with a prescribed vertical decay scale), then

substitution into Eq. (58) and some rearrangement

[where we have also, for the point of argument, ignored

the terms dependent on b0
z, and removed the advective

term in favor of multiplying the diffusive terms by 2 as

shown in Eq. (53)] yields

k
0
’ hCik

bk
ðhfCi1 2N22 cosufhC(0)[b(0)2m

b
]iy

1 hC(b2m
b
)f

z
igÞ21

. (64)

If the three-dimensional tracermoments hbCi, hb2Ci, and
kbk, along with the shape function correlations hfCi and
hC(b2mb)fzi and the concentrations of tracer near the

boundary hC(0)iy and hC(0)b(0)iy can be measured, then

Eq. (64) provides an estimate of the peak near-bottom

diffusivity k0 taking into account the boundary and kz ef-

fects. Utilization of similar equations for higher tracer

moments may allow for more free parameters [such as the

decay scale of f (~z)] to be determined. However, it remains

unclear whether the time- and space-averaged tracer cor-

relations in Eq. (64) can be estimated with sufficient ac-

curacy given sampling limitations in the field.

Finally, it may also be possible to use the knowledge

and relations gained from this study to build an in-

termediate complexity prognostic model of the tracer

dispersion that is simplified relative to the full 2D or 3D

FIG. 13. A summary of the time-averaged (or cumulative) dif-

fusivity between days 0 and 800 from all the point-release experi-

ments with a slope of 1/400, bottom-intensifiedmixing and a release

point at z0 5 d/2. Shown are the time-averaged bulk (open circles)

and in situ (crosses) diffusivities as a function of the along-

isopycnal diffusivity AH. Also shown (black triangles) is the dif-

fusivity estimated from a three-parameter least squares fit to a 1D

advection–diffusion equation (Ledwell and Watson 1991; Ledwell

1998, see appendix B).
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problem but takes into account some of the boundary

effects neglected by the 1D advection–diffusion model

considered in appendix B. A more comprehensive in-

versemodel along these lines may allow better estimates

of the properties of the small-scale turbulent diffusivity

to be obtained from the sparsely sampled tracer data.

The development of such a model is, however, outside

the scope of this article.

9. Summary

We have examined the behavior of a passive tracer

released near a sloping boundary within an idealized

flow governed by one-dimensional boundary layer the-

ory. Results can be summarized as follows:

1) For isolated near-boundary tracer releases the pres-

ence of the boundary reduces the net diapycnal tracer

spreading rate below that which would be expected

from averaging the in situ diffusivity over the tracer

patch (Figs. 5c and 13).

2) The dipole of diapycnal flow, upward in the BBL and

downward in the SML, also influences the tracer

dispersion. In particular, when the tracer is re-

leased close to the boundary it tends to move up-

slope toward less-dense fluid on average (e.g.,

Figs. 4d–f) due to the asymmetric distribution of

diapycnal flow between the BBL and SML (the

SML flow being spread over a much wider region).

However, the extent of this upslope motion de-

pends on the proximity of the tracer release point

to the boundary (Fig. 6); tracers released further

from the boundary in the outer SML experience a

net downward diapycnal motion (as summarized

by Fig. 8).

3) As a consequence of the advection–diffusion balance

in the buoyancy equation, there is an equivalence

between the diffusive and advective tracer fluxes;

they both contribute equally to the domain-

averaged diapycnal tracer flux [Eq. (48)]. Further,

the slowing of the diapycnal tracer spreading

rate due to the presence of the boundary is

equivalent to the influence of tracer advection

within the BBL, while the modest enhancement

in tracer spreading associated with the divergent

diapycnal flow in the SML is equivalent to the

diffusive influence of the gradient in the isotropic

diffusivity.

4) For tracers released at a point the boundary slope

has little influence on the diapycnal spreading rate.

5) The introduction of reduced stratification and slop-

ing isopycnals in the SML (Callies 2018) reduces

the rate at which tracer spreads across isopycnals.

However, as a diffusivity measures the rate of tracer

spreading in physical space the bulk diffusivity is not

affected.

6) When the vertical decay scale of bottom-intensified

mixing is decreased the diapycnal tracer spreading

rate is reduced as the in situ diffusivity decreases.

However, an increase in the SML transport diver-

gence acts to partially compensate this reduction in

spreading rate.

7) Along-isopycnal diffusion enhances the diapycnal

tracer spreading rate for near-boundary point re-

leases by reducing the damping influence of the

boundary and BBL advection (Fig. 13). Along-

isopycnal diffusion also drives more tracer away

from the boundary to where mixing is weak, re-

ducing the in situ diffusivity averaged over the

tracer patch.

These results have implications not only for abys-

sal circulation, water-mass transformation, and how

we observe these processes, but also for the trans-

port of benthic-origin chemical tracers and sedi-

ments (e.g., Lampitt et al. 2003; McPhee-Shaw 2006;

Baskaran 2016).

While the differences between tracer-derived and

in situ diffusivities arising from the additional boundary

effects exposed in this study are generally less than an

order of magnitude, our results nevertheless highlight

the complexity of tracer behavior near sloping

boundaries. Additional complexities present in the

observational context likely make matters worse.

Variations in topographic slope, mixing intensity

and stratification are likely to drive additional tracer

transports. Submesoscale to large-scale currents will

also drive interactions between the tracer patch and

different boundaries at a range of depths, buoy-

ancies, and times. It is possible that averaging over

these complexities will result in smooth Gaussian

tracer spreading across buoyancy surfaces with a

well-defined central diffusivity. However, our results

suggest that relating this tracer-derived diffusiv-

ity to the small-scale turbulent diffusivity impor-

tant for buoyancy and mass transport must be done

with care. In section 8 we discussed several avenues

that may help with the analysis of future near-

boundary TREs.

Further modeling work is also needed to assess the

impact of additional complexities. For example, a large

net upslope or downslopemass transport associated with

upslope variations in topography, stratification or mix-

ing may influence the tracer behavior. The role of in-

trusions of boundary layer fluid into the interior (e.g.,

Gloor et al. 2000; Lampitt et al. 2003; McPhee-Shaw

2006; Kunze et al. 2012) is another area that deserves
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further attention. In this article, the influence of such

intrusions on tracer transport was captured at first-order

through an along-isopycnal diffusivity. Such an ap-

proximation may be appropriate for the statistical av-

erage tracer behavior, but is less applicable to a tracer

released, for example, at a particular phase of a passing

eddy. Eddy and internal wave induced strain may also

influence the diapycnal tracer transport (Wagner et al.

2019). Finally, the relationship between the along-

isopycnal diffusion and the eddy-driven overturning

required to maintain a stratified SML in rotating

boundary layer theory (e.g., Callies 2018), and whether

this influences the tracer transport, is worthy of further

exploration. A deep understanding of these processes

is needed in order to represent them appropriately in

general circulation models.
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APPENDIX A

The Approximate Analytic Solution

Here we present the derivation of the approxi-

mate analytic solution to one-dimensional bound-

ary layer theory with a bottom-intensified diffusivity

[Eq. (7)] following Callies (2018) [note that our der-

ivation differs from Callies (2018) through the use

of distinct viscosities in the x and y directions]. We

nondimensionalize the boundary layer equations

using

k5 k
0
k̂, n

u
5 n

u0
k̂, n

y
5 n

y0
k̂, z5 ẑd,

C5 k
0
cotuĈ , (A1)

where k0, nu0, and ny0 represent the near-boundary dif-

fusivity and viscosity. Equation (7) then becomes

d2

dẑ2

 
k̂
d2Ĉ

dẑ2

!
1 4(dq

0
)4

Ĉ

k̂
2

11 (SPr
u0
)21 r

k̂

11 (SPr
u0
)21

2
4

3
55 0,

(A2)

where r5 k‘/k0, q0 is the BBLwidth parameter based on

the mixing coefficients near the boundary [Eq. (9)] and

we have assumed constant Prandtl numbers Pru0 and

Pry0. For reasonable deep ocean parameters q21
0 ; 4:5m

[or q21
0 5 28m for small (SPru0)

21 where q0 is de-

termined by upslope friction only, see Eq. (9)]. There-

fore with d ; 500m, dq0 ; 20 and the fourth derivative

term in Eq. (A2) can be ignored outside the thin BBL.

Following Garrett (2001), a solution outside the BBL is

therefore (restoring the dimensions)

CSML 5
cotu

11 (SPr
u0
)21

[k1 (SPr
u0
)21

k
‘
] , (A3)

›b

›z

SML

5N2 cosu

11 (SPr
u0
)21

h
11 (SPr

u0
)21k‘

k

i
. (A4)

For large (SPru0)
21, this gives much reduced stratifica-

tion over the entire SML until k approaches k‘
(Callies 2018).

Equations (A3) and (A4) provide a solution in the

SML, but do not satisfy the boundary conditions C 5 0

and ›C/›z 5 0 at z 5 0. To satisfy these boundary

conditions we introduce an inner BBL solution where

the fourth derivative term in Eq. (A2) becomes im-

portant. For this inner solution we can make the as-

sumption that the mixing coefficients are constant k;
k0, nu ; nu0, ny ; ny0. With C 5 CBBL 1 CSML, where

CSML is assumed constant in the BBL, substitution

into Eq. (7) yields

d4CBBL

dz4
1 4q4

0C
BBL 5 0, (A5)

The solution that satisfies the boundary condition

CBBL(0)52CSML(0) and ›CBBL/›z(0)5 0 (neglecting

the small ›CSML/›z at z 5 0) is given by

CBBL 52
cotu

11 (SPr
u0
)21

[k
0
1 (SPr

u0
)21

k
‘
]

3 e2q0z(cosq
0
z1 sinq

0
z) , (A6)

so that the full approximate solution is

C5
cotu

11 (SPr
u0
)21

[k1 (SPr
u0
)21

k
‘
]

3 [12 e2q0z(cosq
0
z1 sinq

0
z)] , (A7)

where we have also used the fact that k0e
2q0z(cosq0z1

sinq0z)’ ke2q0z(cosq0z1 sinq0z). In the limit (SPru0)
21

/ 0 Eq. (A7) reduces to Eq. (11), which will be used

to determine the upslope velocity V 5 ›C/›z and

buoyancy field bz 5N2sinuC/k for the 2D tracer release

experiments.
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APPENDIX B

AOne-Dimensional Model of the Tracer Dispersion
across Isopycnals

In this appendix we apply a one-dimensional model,

commonly used in field TREs (e.g., Ledwell andWatson

1991; Ledwell 1998), to the evolution of the tracer dis-

tribution in buoyancy space. The tracer evolution is

modeled using the one-dimensional equation

›C
›t

1 (w2 k
h
)
›C
›h

5 k
›2C
›h2

, (B1)

where the overbar denotes an area average on iso-

pycnals at a given height h above a target buoyancy

surface. A mean stratification profile is used to con-

vert between h and b. The area-averaged diffusivity is

assumed to be a linear function of h, k5 k0 1 hkh.

Following Ledwell and Watson (1991) and Ledwell

(1998), we discretize Eq. (B1) using a forward-in-time,

centered-in-space discretization and minimize the

sum of squares

�
h

(Cobsn 2L
nC

0
) , (B2)

with respect to the three parameters k0, w, and kh. The

sum is performed over the discretized height h. Here

Cobsn is the distribution of tracer in buoyancy space

from the full 2D simulation at a given time tn, L is a

matrix operator representing the centered-in-space

spatial discretization of Eq. (B1), and C0 is the initial

tracer distribution.B1

The model matches the evolution of the buoyancy

tracer profiles from the full two-dimensional simu-

lations very well for both constant (not shown) and

bottom-intensified (cf. solid lines and open circles

in Fig. B1a) diffusivity cases. The least squares fit

provides an estimate of a single diffusivity and its

linear gradient over the full evolution of the tracer

up to a given time. This diffusivity, at the center-of-

mass position of the fitted tracer distribution, com-

pares well with the time-averaged bulk diffusivity

measured from the tracer moments (cf. solid blue

and orange lines in Fig. B1b). In particular, the fitting

method reproduces the rapid initial decrease in

the tracer spreading rate below that expected from

the in situ diffusivity due to the presence of the

boundary.B2

The least squares fit also provides estimates of a mean

diapycnal velocity w and diffusivity gradient (solid and

dashed lines in Fig. B1c, respectively). The fit predicts

negative values for w and kh at initial times before the

tracer contacts the boundary, consistent with what

would be expected within the SML. However, at later

times kh is predicted as positive. Integrating Eq. (B1)

over all h shows that the rate of change of the center of

mass mh and the one-dimensional bulk diffusivity in the

one-dimensional model are given by

FIG. B1. (a) Evolution of the tracer buoyancy profiles for the

exponential isotropic diffusivity two-dimensional case shown in

Fig. 5 (solid lines) and the center-of-mass time series (dotted lines).

The open circles are profiles from a three-parameter least squares

fit to a one-dimensional advection–diffusion equation [Eq. (B1)].

(b) Time series of the time-averaged bulk diffusivity (solid orange

line), the in situ diffusivity (dashed orange line) and the diffusivities

estimated from the three-parameter least squares fit at h 5 0

(dotted blue line) and at h5 mh (solid blue line). (c) Time series of

the diffusivity gradient (dashed line) and diapycnal velocity (solid

line) from the three-parameter fit.

B1We use a nonlinear Levenberg–Marquardt least squares

minimization algorithm (Moré 1978). The spatial discretization

uses a regular height grid with 100 points converted from buoyancy

space using the far-field stratification N2. The time step is 1 day.

B2 However, if the presence of a boundary at a particular value of

b was known, then this could be included in the boundary condi-

tions of the one-dimensional model and a better estimate of the

in situ diffusivity could be obtained. In a field TRE boundaries are

likely present at varying depths and buoyancies over the history of

the experiment, and thus this knowledge is unlikely.
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k1D
bk 5

1

2

›s2
h

›t
5

hkCih
hCi 5 k

h
m
h
1 k

0
. (B4)

Thus, the positive w and kh at later times are present in

order to drive the center of mass toward less dense fluid

[Eq. (B3)]. In the full two-dimensional case this center-

of-mass movement is achieved by the boundary effect

and BBL advection, which are not captured by the one-

dimensional model [they do not appear in Eq. (B3)].

Further, in the one-dimensional model the bulk diffu-

sivity is equal to the one-dimensional in situ diffusivity

hkCih/hCi, which in turn is equal to the diffusivity at the

tracer center-of-mass position mh [Eq. (B4)]. Com-

paring Eq. (B4) to Eq. (58), the boundary effect, the

advective term and the diffusivity gradient term in

Eq. (58) all drop out because w and kh are constants

and can be removed from the averaging leaving the factor

h(h2mh)Ci5 0. Thus, the one-dimensional model, while

reproducing the evolution of the tracer variance in

buoyancy space, assigns all of that spreading rate to the

in situ diffusivity k. Because we found the spreading rate

to be less than expected from the in situ diffusivity, the 1D

methodwould thus yield amuch reduced in situ diffusivity

compared to that actually acting on the tracer hkCi/hCi.

APPENDIX C

Interior TRE Based on BBTRE

In this appendix we examine an idealized TRE based

on BBTRE, which combines a number of parameters

considered individually in section 7, namely, along-

isopycnal diffusion and sloping isopycnals where the

tracer is released well into the interior. We base this

simulation on the fit to one-dimensional boundary layer

theory performed by Callies (2018) for the Brazil Basin.

The parameters are a slope of 1/500, AH 5 100m2 s21,

N25 1.693 1026 s22, d5 230m, k05 1.83 1023m2 s21,

k‘ 5 5.2 3 1025m2 s21, and a u-momentum Prandtl

number of Pru05 230 [corresponding to a reduction in the

stratification in the SML by a factor of (SPru0)
21 5 1.95].

We release the tracer 1000m above the bottom, corre-

sponding approximately to the release height of the

BBTRE tracer (Fig. 2 of Ledwell et al. 2000). Note that

this height corresponds roughly to the transition between

the sloping isopycnals in the outer abyssal mixing layer

and the flat isopycnals in the interior (see Fig. C1).

Due to the along-isopycnal diffusion, the tracer is

diffused into the SML and then downward toward the

boundary. The spreading rate across isopycnals is

weak as the tracer is located mostly away from the

boundary where diapycnal diffusion is weak. How-

ever, the behavior of the tracer is rendered somewhat

more complex by the change in the stratification be-

tween the interior and the mixing layer. This variation

in the stratification influences the evolution of the

tracer moments in buoyancy space as Bz in Eqs. (54)

and (58) is no longer constant. Equation (54) for the

center of mass becomes

hCi›mb

›t
5B

y
hVCi1 k

0
B

z
(y, 0)

ð‘
2‘

C(y, 0, t) dy

1 hCk
z
B

z
i1 hCkB

zz
i2 hkC

z
b0
zi , (C1)

where

B
z
5

N2 cosu

11 (SPr
u0
)21

h
12 (SPr

u0
)21
�
12

k
‘

k

�i
, (C2)

is the slope-normal buoyancy gradient outside the BBL

and b0
z is the BBL stratification anomaly [Eq. (16) di-

vided by 11 (SPru0)
21]. AsBz now varies with z, it must

be included inside the averaging brackets in the third

term on the rhs of Eq. (C1), and the fourth term,

FIG. C1. The evolution of a tracer patch released at 1000m above the bottom (open white circle) based on BBTRE. The position of the

tracer center of mass (my, mz) is shown with a solid circle, and the position of the center of mass of tracer located only on the boundary is

shown with a cross.
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dependent on the curvature of the interior buoyancy

field Bzz, appears.

As expected, the center of mass of the tracer is drawn

toward denser fluid during the initial stage of the TRE

due to the bottom-intensified diffusivity and downslope

SML flow (solid and dotted lines in Fig. C2b), consistent

with BBTRE (Ledwell et al. 2000). However, as the

tracer approaches the boundary the BBL flow (and

boundary effect) begin to drive tracer toward lighter

fluid (dashed line in Fig. C2b). In the later part of the

experiment, the movement of tracer toward lighter

fluid driven by the BBL flow and boundary effect

largely compensate for the driving of tracer toward

denser fluid by the bottom-intensified diffusivity. The

new term dependent on interior buoyancy curvature

makes only a minor contribution that drives tracer

toward lighter fluid as Bzz . 0 (dot–dashed line in

Fig. C2b).

Similar terms must be added to Eq. (58) for the bulk

diffusivity, which becomes

k
bk
5

1

hCi

*
kCB

2
z

N4

+
1

1

N4hCi
	
B

y
h(b2m

b
)VCi1 k

0
B

z
(y, 0)

ð‘
2‘

C(y, 0, t)[b(y, 0)2m
b
] dy1 hC(b2m

b
)k

z
B

z
i

1 hC(b2m
b
)kB

zz
i2 h(b2m

b
)kC

z
b0
zi1 hCkb0

zBz
i


. (C3)

However, for this TRE the bulk diffusivity closely fol-

lows the in situ diffusivity [which now includes a

weighting for the variation in the interior buoyancy

gradient magnitude, first term on the rhs of Eq. (C3),

dashed line in Fig. C2c]. The additional terms, associ-

ated with the boundary and the gradients in the diffu-

sivity and the stratification [fourth and fifth term on the

rhs of Eq. (C3), dotted and dot–dashed terms lines in

FIG. C2. Buoyancy space tracer behavior for the case considered in Fig. C1. (a) The tracer distribution as a

function of buoyancy at days 400, 1200, and 2800.(b) Time series of the center of mass mb (solid lines), the con-

tribution of [see Eq. (C2)] the diffusivity gradient to center-of-mass trends (dotted lines), the contribution of BBL

advection to center-of-mass trends (dashed lines), and the contribution of interior buoyancy curvature to center-of-

mass trends (dot–dashed line). (c) Time series of the instantaneous bulk diffusivity (solid lines), in situ diffusivity

(dashed lines), the contribution of [see Eq. (C3)] the diffusivity gradient to the bulk diffusivity (dotted lines), and

the contribution of interior buoyancy curvature to the bulk diffusivity (dot–dashed line).
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Fig. C2c], are relatively weak as much of the tracer is

located in the interior away from the boundary. In ad-

dition, the boundary effects are reduced because the

stratification is reduced in the near-boundary region

(see section 7c). As for the center of mass, there is some

cancellation between enhanced diapycnal tracer diffu-

sion due to the diffusivity gradient (dotted line in

Fig. C2c) and the boundary effect (not shown, accounts

for the bulk diffusivity being less than the in situ diffusiv-

ity after day 500). Therefore, this experiment shows rela-

tively little boundary influence, as would be expected for

BBTREgiven the tracer was releasedwell into the interior

of the basin. However, it should be noted that this exper-

iment is idealized and does not include many other com-

plexities that may have impacted BBTRE. Enhanced

boundary effects may be observed if analysis were re-

stricted to tracer located near the boundary.
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