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Abstract Tropical instability waves (TIWs) are a major source of internally-7

generated oceanic variability in the equatorial Pacific Ocean. These non-linear8

phenomena play an important role in the sea surface temperature (SST) bud-9

get in a region critical for low-frequency modes of variability such as the El10

Niño-Southern Oscillation (ENSO). However, the direct contribution of TIW-11

driven stochastic variability to ENSO has received little attention. Here, we12

investigate the influence of TIWs on ENSO using a 1/4◦ ocean model coupled13

to a simple atmosphere. The use of a simple atmosphere removes complex14
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intrinsic atmospheric variability while allowing the dominant mode of air-sea15

coupling to be represented as a statistical relationship between SST and wind16

stress anomalies. Using this hybrid coupled model, we perform a suite of cou-17

pled ensemble forecast experiments initiated with wind bursts in the western18

Pacific, where individual ensemble members differ only due to internal oceanic19

variability. We find that TIWs can induce a spread in the forecast amplitude20

of the Niño 3 SST anomaly six-months after a given sequence of WWBs of21

approximately ±45% the size of the ensemble mean anomaly. Further, when22

various estimates of stochastic atmospheric forcing are added, oceanic internal23

variability is found to contribute between about 20% and 70% of the ensemble24

forecast spread, with the remainder attributable to the atmospheric variabil-25

ity. While the oceanic contribution to ENSO stochastic forcing requires further26

quantification beyond the idealized approach used here, our results neverthe-27

less suggest that TIWs may impact ENSO irregularity and predictability. This28

has implications for ENSO representation in low-resolution coupled models.29

Keywords Tropical Instability Waves · El Niño - Southern Oscillation ·30

Ocean General Circulation Model · Hybrid Coupled Model · Stochastic31

Forcing · Predictability32

1 Introduction33

Tropical Instability Waves (TIWs) are the dominant form of eddy variability34

in the tropical Pacific Ocean. They have timescales of 15-40 days, wavelengths35

of 700-1600km and their intensity varies seasonally and interannually with36

the strength of the equatorial circulation (Dueing et al, 1975; Legeckis, 1977;37

Contreras, 2002; Willett et al, 2006; Lyman et al, 2007; An, 2008). TIWs play38

an important role in the heat and momentum budget of the large-scale flow39

and influence the SST (Menkes et al, 2006; Jochum and Murtugudde, 2006).40

Through their SST anomalies TIWs directly alter the atmospheric surface41

winds at TIW scales (Chelton et al, 2001; Narapusetty and Kirtman, 2014),42

an effect that is known to feedback onto the TIWs themselves and influence the43
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oceanic and atmospheric mean states (Pezzi et al, 2004; Zhang, 2014). While44

the dynamics of TIWs and their impacts on the mean equatorial circulation45

are well understood, their influence on interannual variability in the tropics46

has received less attention, beyond a number of studies on the contribution47

of TIW lateral heat fluxes to ENSO asymmetry (e.g. An, 2009; Imada and48

Kimoto, 2012), and rectification of TIW-associated small-scale atmospheric49

variability (Zhang and Busalacchi, 2008; Zhang, 2016). This is a particularly50

pertinent point given that TIWs are not fully resolved in the typical 1◦ ocean51

models used to study ENSO (Graham, 2014)1, and that many coupled models52

underestimate SST variability in the eastern Pacific where TIWs are most53

active (Latif et al, 2001).54

TIWs gain energy from non-linear hydrodynamic instabilities (Philander,55

1976; Cox, 1980; Masina et al, 1999; Holmes and Thomas, 2016) that have56

a stochastic element. Therefore, the phasing and strength of TIWs can vary57

randomly, independent of variations in the mean circulation from which the58

TIWs gain energy. This internal stochastic oceanic variability is thought to59

contribute to interannual variability in ocean-only (Jochum and Murtugudde,60

2004, 2005; von Schuckmann et al, 2008) and SST-forced atmosphere-only61

(Jochum et al, 2007b) models and can influence the skill of seasonal forecasts62

(Ham and Kang, 2011). Jochum et al (2007b) found that including TIW SST63

variability in the forcing of an atmospheric model increased wind and rainfall64

variability near the equator and near ±25◦ latitude by up to 35%. Jochum65

and Murtugudde (2004) and Jochum et al (2007b) suggest that the SST and66

wind stress variability induced by TIWs in the eastern Pacific is comparable67

to that driven by the Madden-Julian Oscillation (MJO) in the western Pa-68

cific, and thus could potentially contribute to the irregularity of the ENSO69

cycle. However, this hypothesis has not yet been investigated in depth in the70

literature.71

1 A form of TIWs can exist in these low-resolution models, and a correct representation

of them within 1◦ models may be possible with an appropriate choice of viscosity (Jochum

et al, 2008).
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Stochastic forcing of the ENSO cycle is thought to stem mainly from in-72

ternal atmospheric variability, in particular from wind bursts in the western73

Pacific associated with tropical cyclones and MJO events (Keen, 1982; Zhang,74

2005). Such wind bursts can stochastically generate SST anomalies in the cen-75

tral and eastern Pacific via the zonal advection and thermocline depth anoma-76

lies associated with equatorial Kelvin waves, contributing to the irregularity77

of the ENSO cycle (Moore and Kleeman, 1999; Zavala-Garay et al, 2003).78

The strength and frequency of western Pacific wind bursts is thought to be79

dependent on the ENSO state, contributing to the asymmetry and diversity80

of ENSO events (Eisenman et al, 2005; Gebbie et al, 2007; Levine et al, 2016;81

Levine and Jin, 2017; Hayashi and Watanabe, 2017). The response of the ocean82

to a given wind burst is also thought to depend on the oceanic background83

state (Hu et al, 2014; Puy et al, 2016). However, in the eastern Pacific Puy84

et al (2016) found that this dependence was less clear due to TIW-driven noise85

and its rectification onto the mean state. This suggests that oceanic-sourced86

noise may also contribute to ENSO variability, in addition to noise sourced in87

the atmosphere. Finally, Holmes and Thomas (2016) found that TIWs act to88

damp the heat anomalies induced by intraseasonal Kelvin waves, which may89

impact the ability of Kelvin waves to kick-start the air-sea feedbacks necessary90

to initiate ENSO events.91

In this study, we investigate how internal oceanic variability associated92

with TIWs influences the growth and amplitude of ENSO events. We use a93

1/4◦ resolution Pacific basin-wide ocean model coupled to a simplified at-94

mospheric model and focus on the strong TIW and ENSO growth season of95

July-December. The simple atmospheric model is designed to isolate the effect96

of TIW-driven noise on coupled variability, as internal atmospheric variability97

associated with a fully-dynamic atmosphere is absent. Hybrid coupled models98

that utilize a simplified atmosphere, ocean, or both, have been used exten-99

sively in the study of ENSO predictability, irregularity, frequency, seasonality,100

asymmetry and the role of stochastic forcing (e.g. Neelin, 1990; Kirtman, 1997;101

Blanke et al, 1997; Zavala-Garay et al, 2003). However, there are several key102
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differences between these models used in the past and our model. Firstly, our103

higher resolution 1/4◦ ocean model better resolves TIWs and their significant104

contribution to the upper-ocean heat budget (Menkes et al, 2006), which is105

likely underestimated in lower resolution models (Graham, 2014). Secondly, we106

use an atmospheric boundary layer model (ABLM) in the atmosphere (Seager107

et al, 1995; Deremble et al, 2013). Both these elements facilitate a focus on108

the role of complex non-linear ocean dynamics in ENSO, and also provide a109

comparison with previous hybrid models that have utilized full atmospheric110

GCMs coupled to simple ocean models (e.g. Dommenget, 2010; Frauen and111

Dommenget, 2010).112

The article is organized as follows. In Section 2 we describe the modeling113

setup; the ocean model, the various atmospheric forcing data sets and the114

simplified atmospheric model. In Section 3 we examine the influence of the115

oceanic internal variability on SST variability without the statistical atmo-116

spheric coupling (i.e. an uncoupled system with constant wind stress forcing).117

In Section 4 we then examine the influence of this variability within an ensem-118

ble of coupled forecast experiments. Section 5 compares the impact of oceanic119

internal variability with several different estimates of stochastic atmospheric120

forcing. The results are discussed and summarized in Section 6.121

2 Model and Experimental Design122

2.1 The Ocean Model123

We use the Regional Ocean Modeling System (ROMS, Shchepetkin and McWilliams,124

2005) ocean model in a configuration, adapted from Holmes and Thomas125

(2016), that spans the tropical Pacific Ocean (105◦E to 70◦W, 30◦S to 30◦N)126

with 0.25◦ horizontal resolution, 50 vertical levels and a time step of 10 min-127

utes. At the western and meridional boundaries temperature and salinity are128

nudged to climatological values from the World Ocean Atlas 2013 (WOA13,129

Locarnini et al, 2013; Zweng et al, 2013) and the horizontal velocity is nudged130
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to zero. The K-profile parameterization is used to parameterize sub-grid scale131

vertical mixing processes (Large et al, 1994). We use a diurnal cycle in short-132

wave radiation as we found this to be necessary to correctly represent the shear133

and stratification in the upper Equatorial Undercurrent (EUC). Horizontal dif-134

fusion of momentum was achieved with a bi-harmonic viscosity with coefficient135

1× 1011m4s−1, and harmonic horizontal diffusion of temperature and salinity136

was included with coefficient 100m2s−1. ROMS has been successfully used for137

process studies of TIWs under similar configurations (Marchesiello et al, 2011;138

Holmes and Thomas, 2016).139

2.2 The Control Atmospheric Forcing140

To simplify the analysis and interpretation, we use a temporally-constant con-141

trol atmospheric forcing set. This idealization allows the role of internal oceanic142

variability associated with TIWs to be cleanly isolated from atmospheric vari-143

ability. Surface forcing fields are taken from a July-December average of the144

ERA-Interim 1980-2014 data set (Dee et al, 2011). This season has strong trade145

winds, with energetic TIWs (Contreras, 2002), and is the typical growth pe-146

riod for ENSO events which peak in December-January-February (Tziperman147

et al, 1997), thus ideal for this process study.148

Using a temporal average of the ERA-Interim atmospheric state variables149

(e.g. six monthly-averaged wind speed) can cause inaccuracies in the heat flux150

and wind stress derived from these variables as quadratic terms in the bulk151

formula, involving temporal correlations between variables, are ignored (e.g.152

see Penduff et al, 2011). To avoid this problem here we use the ERA-Interim153

data to explicitly prescribe both the wind stress, capturing the non-linearities154

in the momentum forcing, and the wind speed magnitude (as opposed to its155

two components), thereby retaining the correct wind speed magnitude in the156

bulk calculation of the latent and sensible heat fluxes. This does not correct157

for all the quadratic correlation terms in the bulk formula, but the remaining158
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biases are acceptable for the idealized nature of the experiments performed159

here, as will be discussed shortly.160

A simulation using the ERA-Interim forcing described above was spun up161

over a 7-year period initialized from WOA13 July-December climatology. We162

refer to the last 2 years of this simulation, used for analysis below, as the163

Bulk Control (see Fig. 1 for a schematic of the various control and ensemble164

experiments considered in this study). The forcing input fields used are the165

atmospheric surface air temperature Tair, surface specific humidity qair, sea166

level pressure Pair, zonal and meridional wind stresses τx and τy, downward167

solar radiation srad and downward long-wave radiation lrad. We also use the168

wind speed magnitude Um =
√
U2
10 + V 2

10 calculated from the 12-hourly ERA-169

Interim 10m wind speeds U10 and V10. The radiative forcing fields include the170

effects of clouds. For the freshwater forcing we use a relaxation to the WOA13171

Sea Surface Salinity (SSS) field with a 10-day relaxation time-scale.172

For the majority of simulations discussed in this article we use an At-173

mospheric Boundary Layer Model (ABLM) to determine the atmospheric air174

temperature Tair and humidity qair, as opposed to specifying them directly175

as in Bulk Control. This is utilized to remove the effective SST nudging as-176

sociated with a fixed Tair (i.e., an infinite atmospheric heat capacity) that177

restricts the imprint of oceanic internal variability on SST. The implementa-178

tion of the ABLM used here is based on the cheapAML model of Deremble179

et al (2013), following earlier work by Seager et al (1995). The model solves180

single-layer advection-diffusion equations for Tair and qair and parameterizes181

the vertical transfers of heat and moisture at the air-sea interface and the top182

of the atmospheric boundary layer (see the Appendix for details).183

2.3 The Control Ocean Circulation184

The Bulk Control matches observations well with respect to SST and the equa-185

torial thermal and velocity structure. The SST field (Fig. 2a) shows minimal186

bias when compared with the 1982 − 2014 ORA-S4 ocean reanalysis product187
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Fig. 1 A schematic illustrating the different control and ensemble experiments considered in

this study. A 7 year simulation forced with constant forcing from the ERA Interim 1980-2014

July-December average and using bulk formula is initialized from the WOA13 climatology

(left). After 5 years the ABLM is turned on and run for 8 years, with the last 4 years used

as ABLM Control (thick center black line). ABLM Control is used as the initial condition

for uncoupled and coupled (see Section 2.5) wind burst experiments, initialized every two

months (blue lines - ABLM Ensemble). In addition, a range of other control experiments

(thick black lines) are produced by adding various estimates of high-frequency atmospheric

(ATM) forcing (see Section 2.6). CORE-NYF Control and 1994-1995 Stochastic Control are

also used as initial conditions for additional coupled wind burst ensembles (see Figs. 12 and

13 respectively), whose results are compared to the ABLM Ensemble (which contains only

ocean-sourced variability) to quantify the relative contributions of oceanic and atmospheric

variability. We also perform a two-year simulation (1996-1997 Control) forced with full

atmospheric forcing anomalies from 1996-1997 to evaluate the impact of different coupling

coefficients RF (see Section 4.1).
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(Balmaseda et al, 2013) over the July-December season (Fig. 2b). There is188

a slight 0.5◦C cold bias over the central equatorial Pacific and a warm bias189

reaching 2◦C in the far eastern Pacific (associated with common biases in190

eastern boundary current systems, e.g. Small et al, 2015). The 20◦C isotherm191

depth is too shallow under the ITCZ (by roughly 40m) and the EUC is too192

strong (by 0.3− 0.4ms−1) and slightly too shallow (not shown). However, the193

important metrics of the equatorial SST and thermocline depth do not exhibit194

large biases, and thus the model is sufficient for our purposes.195

A simulation with an active ABLM (described in the Appendix) was ini-196

tialized from the 5th year of the Bulk-forced simulation and run for 8 years.197

The last 4 years of this simulation, referred to as the ABLM Control (see Fig.198

1), is used for analysis and as initial conditions for wind burst experiments.199

There are larger SST biases in this simulation compared to Bulk Control (com-200

pare Figs. 2d,e to Figs. 2a,b). The 0.5◦C cold bias along the equator is slightly201

more extensive than in Bulk Control, while the warm bias in the far eastern202

Pacific is reduced. There is a 1.5◦C warm bias in the western Pacific (Fig. 2e).203

We expect that the east-west cold-warm bias is mainly a response to the lack204

of low-cloud feedbacks in the ABLM. In terms of the other fields there are205

only minimal differences to Bulk Control. The upper EUC strength is reduced206

in ABLM Control (Fig. 2f), improving its comparison with the ORA-S4 data207

(not shown).208

In order to study the impact of oceanic internal variability on ENSO it209

is important to simulate an appropriate level of eddy kinetic energy (EKE).210

Both ABLM Control and Bulk Control give similar surface EKE fields, reach-211

ing 0.25m2s−2 in the central Pacific (Figs. 3a,b). These EKE values, which212

include all time-variable flow in our control simulations, are comparable to213

observed EKE values (Flament et al, 1996). Isolating only the TIW frequency214

band, the variance of 3−60 day band-pass filtered meridional velocity at 0◦N,215

140◦N in the upper 50m in ABLM Control is 760cm2s−2, comparable to the216

970cm2s−2 obtained from the TAO array mooring at the same location (cal-217

culated using only the months of July-December over the period 2005-2015).218
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Fig. 2 SST (◦C) from (a) Bulk Control and (d) ABLM Control, averaged over two years.

SST bias (◦C) compared to the ORA-S4 1980-2014 July-December SST field for (b) Bulk

Control and (e) ABLM Control. (c) 20◦C isotherm depth (m) and (f) equatorial depth-

longitude slice of zonal velocity (ms−1) and isotherms (◦C) from ABLM Control.

A spatially-resolved comparison to observations can be made with SSH vari-219

ability2 (e.g. Small et al, 2009). A comparison of the 12◦ longitude high-pass220

filtered SSH variability between ABLM Control and AVISO altimetry obser-221

vations spanning the period 1993-2016, July-December shows good agreement222

over the TIW variability peak in the equatorial region (Figs. 3c,d,e east of the223

dateline between 3◦N and 8◦N). Therefore we conclude that the model rep-224

resents the amplitude and spatial distribution of equatorial mesoscale oceanic225

variability well.226

2 SST could also be used for this purpose. However, this is more strongly influenced by

atmospheric variability that is not present in our control simulations.
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Fig. 3 Surface EKE (m2s−2) from (a) Bulk Control and (b) ABLM Control, averaged

over two years. The EKE is calculated as
√

(u′)2 + (v′)2, where the prime indicates de-

viations from the temporal mean. Standard deviation of 12◦-longitude high-passed SSH

variability (m) from (c) AVISO satellite altimetry observations over the period 1993-2016,

July-December and (d) ABLM Control. (e) SSH variability averaged over the Niño 3 (black

box) longitudes 150◦W to 90◦W for both ABLM Control and AVISO.

2.4 Western Pacific Wind Bursts227

To examine the role of oceanic internal variability we perform idealized exper-228

iments initialized by applying wind bursts over the western Pacific. We use a229

representative Gaussian wind burst based on the analysis of ERA-40 reanalysis230

data by Gebbie et al (2007),231

τx(x, y, t) = A exp

(
− (t− t0)2

T 2
− (x− x0)2

X2
− (y − y0)2

Y 2

)
, (1)232

where A = 0.07Nm−2, X = 20◦ longitude, Y = 6◦ latitude and T = 5 days.233

We apply this wind burst centered on the equator (y0 = 0◦) at x0 = 195◦W.234

See Gebbie et al (2007) for a discussion of the merits of this choice.235

2.5 Statistical Air-Sea Coupling236

In addition to uncoupled wind burst experiments, we also perform a series of237

coupled experiments where the wind stress and other atmospheric variables238

depend on the oceanic SST anomalies through a statistical relationship. The239
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statistical relationship is based on the first mode of a singular value decom-240

position (SVD) of the SST and wind stress covariance matrix from the ERA241

Interim 1980-2014 July-December monthly-averaged data set (Fig. 4a). This242

first mode represents the dominant mode of air-sea coupling in the region and243

captures the Bjerknes feedback where a decreased zonal SST gradient across244

the Pacific leads to a decrease in the strength of the trade winds in the central245

Pacific. This type of simple coupling has been used extensively in the literature246

(e.g. Syu et al, 1995; Blanke et al, 1997; Gebbie et al, 2007; Zhang, 2015). We247

use only one mode because 1) it explains 95% of the covariance in the monthly-248

averaged July-December SST and wind stress fields, 2) we wish to focus only249

on the growth phase, not the decay phase of ENSO and 3) the second mode is250

thought to be closely associated with the seasonal cycle, which is not present251

in our control forcing. We obtain perturbation fields for the forcing variables252

other than wind stress by regressing the SVD time-series onto the monthly253

anomalies of those fields (the patterns for τx, τy, solar and downward long-254

wave radiation and wind speed magnitude are shown in Fig. 4b-f). The SVD255

air temperature and humidity patterns are only used as boundary conditions256

on the ABLM (i.e., as Tb and qb in Eqns. (A.1) and (A.2)).257

The sequence of steps used while running the coupled model are:258

1. Calculate the SST anomaly field (SST′(x, y)) by subtracting the ABLM259

Control SST from the SST field averaged over the last 15 days (and updated260

every 3 days).261

2. Project this SST anomaly onto the SVD mode to obtain the regression262

coefficient,263

C =

∑
i,j SST′i,jSSTSV D

i,j∑
i,j(SSTSV D

i,j )2
, (2)264

where SSTSV D indicates the SST anomaly pattern in Fig. 4a.265

3. For each forcing field F (x, y), add the sum of the forcing perturbation fields266

FSV D(x, y) (e.g. Fig. 4b-f) onto the control forcing F (x, y):267

F (x, y) = F (x, y) + CRFFSV D(x, y), (3)268
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Fig. 4 (a) SST anomaly (◦C) and wind stress anomaly vectors for the first SVD mode

of SST and wind stress variability in the ERA Interim July-December 1980-2014 data set.

The SVD mode time series regressed onto (b) zonal wind stress (Nm−2), (c) meridional

wind stress (Nm−2), (d) shortwave radiation (Wm−2), (e) downward long-wave radiation

(Wm−2) and (f) wind speed magnitude (ms−1).

where RF is a coupling coefficient.269

The coupling coefficient RF is an important parameter that can control270

the growth rate of the coupled system (e.g. Gebbie et al, 2007). We examine271

results for a range of reasonable coupling coefficients (see Section 4.1).272

2.6 Estimates of Atmospheric Internal Variability273

In Section 5 we examine how oceanic sourced variability compares with a few274

different estimates of stochastic atmospheric forcing as described here.275

2.6.1 High-pass Filter276

One possible method to isolate internal atmospheric variability is to consider277

only the high-frequency component of atmospheric forcing. For this purpose278



14 Holmes et al.

we use high-pass filtered forcing fields from the Coordinated Ocean-ice Refer-279

ence Experiment Normal Year Forcing (CORE-NYF, Large and Yeager, 2004)280

data set. As the CORE-NYF forcing data does not provide wind stress fields,281

we derive equivalent wind stress fields using the ROMS bulk formula with282

climatological SSTs from the ORA-S4 reanalysis. These output wind stresses,283

and the wind speeds, air temperature, humidity and radiation forcing fields284

from CORE-NYF are then filtered with either a 29-day or a 59-day high-pass285

filter. Note that we do not include high-frequency forcing on the SSS or atmo-286

spheric boundary layer height as this data is not available from CORE-NYF.287

Note also that we use high-pass forcing from the full CORE-NYF year, not288

just the July-December season.289

This high-frequency forcing is then added on top of the 1980-2014 July-290

December ERA Interim constant forcing and run for five years (looping over291

the single CORE-NYF year) initialized from ABLM Control. The last four292

years of this simulation (the CORE-NYF Control for the 59-day high pass293

filter, see Fig. 1) was then used for analysis and as the initial conditions for294

coupled ensemble runs.295

Note that the CORE-NYF forcing set is an estimate of an average climato-296

logical year (see Large and Yeager, 2004, for details), and may not, a priori, be297

expected to reproduce accurately the variability associated with wind bursts298

in the western Pacific. To check whether this influences our results, we also299

conducted simulations forced with high-pass filtered atmospheric variability300

from the ERA-Interim data set over the 1994-1995 season (see Fig. 1), chosen301

for its relatively neutral ENSO state. These results showed little difference in302

terms of the overall magnitude of variability compared with the CORE-NYF303

forced simulation (see Section 5).304

2.6.2 SVD-based Estimate of Stochastic Atmospheric Forcing305

As an alternative to the high-pass filter described in the previous section,306

we also attempted to directly isolate any atmospheric variability that is ap-307
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parently independent of the ocean variability. Following Zavala-Garay et al308

(2003), we construct this stochastic signal by subtracting the component of309

the atmospheric variability that is captured by the SVD of the wind stress -310

SST covariance matrix. The SVD is calculated in a similar manner to as in311

the coupling strategy described in Section 2.5, except here we use the monthly312

averaged ERA Interim 1980-2014 data for every month of the season (as op-313

posed to just July-December). We use the first three modes to characterize the314

coupled variability (explaining a total of 98% of the covariance for this time315

period, 91% in mode 1, 6% in mode 2 and 1% in mode 3), and subtract these316

modes (multiplied by their time-series) from the ERA Interim daily forcing317

anomalies. The resulting forcing anomalies do not contain the (linear) modes318

of the coupled system and thus should represent internal stochastic atmo-319

spheric variability that is not associated with oceanic variability. Of course,320

this method does not remove atmospheric variability that is non-linearly re-321

lated to coupled or oceanic variability, and therefore may possibly overestimate322

the variability attributed to the atmosphere. A five year simulation with this323

additional forcing looped over the years 1994-1995, with analysis coming from324

the last four years (see Fig. 1), was then performed in a similar manner to325

CORE-NYF Control to produce a 1994-1995 Stochastic Control (see Section326

5). This control experiment is also used as initial conditions for a coupled327

ensemble (1994-1995 Stochastic Ensemble). Finally, we also performed a con-328

trol simulation with stochastic forcing from 1996-1997, which showed similar329

results to the 1994-1995 Stochastic Control (see Section 5).330

3 Internal Variability in the Uncoupled Simulations331

3.1 Internal Oceanic Variability332

We first examine the variability in ABLM Control, in which ocean-atmosphere333

coupled feedbacks and atmospheric noise are absent. The SST variability as-334

sociated with oceanic internal variability is strongest in the eastern equatorial335
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Pacific, reaching a standard deviation of 1.5◦C in a zonal strip surrounding the336

strong North Equatorial Front associated with TIW induced meridional oscil-337

lations of this front (Fig. 5a). Strong variability is also evident throughout the338

equatorial region east of 200◦W, with a higher amplitude north of the equa-339

tor where both mean meridional temperature contrasts (Fig. 2d) and TIW340

activity (Fig. 3b) are stronger. This SST variability occurs not only at TIW341

periods (15-40 days), but also contains a signature at lower-frequencies. The342

60-day low-pass filtered SST variability is also peaked in the eastern Pacific,343

although shows a more homogeneous structure exceeding 0.2◦C across much344

of the equatorial region (Fig. 5b). While this variability is further reduced by345

averaging over large spatial scales, there is still high and low frequency vari-346

ability in Niño 3 and Niño 3.4 SST, with anomalies reaching ±0.2◦C (Fig.347

5c). This variability, associated purely with oceanic internal variability, is sig-348

nificant relative to the 0.2◦C−0.6◦C SST anomalies associated with typical349

WWBs and intraseasonal Kelvin waves (Chiodi et al, 2014).350

SST variability in the eastern equatorial Pacific is closely related to vari-351

ability in the thermocline depth, approximated by the 20◦C isotherm depth.352

The 20◦C isotherm depth variability is strongest along 5◦N as a consequence of353

the strong TIW activity there (Fig. 5d). However, again there is still variabil-354

ity in the thermocline depth at frequencies slower, and scales larger, than the355

TIWs (Fig. 5e), with variations of ±2m averaged over the Niño 3 and Niño356

3.4 regions (Fig. 5f). These low frequency and large spatial scale anomalies357

are a consequence of the nonlinear rectification of eddy-driven variability (e.g.358

Penduff et al, 2011; Arbic et al, 2014). Deep (shallow) Niño 3 20◦C isotherm359

depth anomalies lead warm (cold) Niño 3 SST anomalies by 39 days with a360

correlation coefficient of 0.49. This connection is weaker in the Niño 3.4 region361

where the mean thermocline is deeper (Zelle et al, 2004).362
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Fig. 5 Variability in ABLM Control. Standard deviation of (a) the 3-day averaged model

output SST (◦C) and (b) 60-day low-pass filtered SST (◦C). (c) Time series of Niño 3 and

Niño 3.4 SST anomalies (◦C). Standard deviation of the 20◦C isotherm depth (m) from

(d) the 3-day averaged model output and (e) 60-day low-pass filtered data. (f) Time series

of Niño 3 and Niño 3.4 20◦C isotherm depth anomalies (m). The thin dotted lines in (c)

and (f) show the results from a simulation with additional 59-day high-pass CORE-NYF

atmospheric variability added (CORE-NYF Control, discussed in Section 5).

3.2 The response of the ocean to a wind burst363

We now examine the response of the ocean to idealized western Pacific wind364

bursts. We apply Gaussian WWBs [Eq. (1)] and Easterly Wind Bursts [EWBs,365

obtained by changing the sign of A in Eq. (1)] over an ensemble of simulations366
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which capture the spread across the internal variability of ABLM Control.367

We construct 25 ensemble members in each set by imposing wind bursts at368

the beginning of every consecutive two-month period over the four years of369

ABLM Control. Averaged over the 25 ensemble members, the WWB creates370

a downwelling Kelvin wave that travels across the Pacific basin in ∼100 days,371

evident in anomalies of the 20◦C isotherm depth (contours in Fig. 6a-c and372

color in Fig. 6f). The Kelvin wave creates warm SST anomalies in the cen-373

tral and eastern Pacific through both the changes in thermocline depth and374

zonal advection (color in Fig. 6a-d and Fig. 6e). These SST anomalies develop375

somewhat after the thermocline depth anomaly of the Kelvin wave, consistent376

with the delay expected from zonal advection and the impact of thermocline377

depth anomalies on SST (compare color in Figs. 6e and 6f, also see Zelle et al378

(2004)). These SST anomalies are strongest along the equator east of 140◦W,379

and are reduced north of the equator, which may be due to the TIW activity380

there (Holmes and Thomas, 2016). The downwelling Kelvin wave is also fol-381

lowed by a weaker upwelling wave that shoals the thermocline and cools the382

sea surface.383

The WWB also creates a strong warm SST anomaly in the western Pacific384

between 200◦W and 180◦W through zonal advection of a background zonal385

SST gradient in this region (Fig. 2d). This warm SST anomaly is larger than386

observations may suggest as the background SST and SST gradient are biased387

in this region (Fig. 2e). However, this enlarged response is unlikely to affect388

the results of this study for several reasons; 1) The amplitude of the SST SVD389

pattern is weak in this region (Fig. 4a), meaning that the statistical atmosphere390

responds only weakly to SST anomalies here. 2) Any amplified response of the391

atmosphere to SST anomalies in this region is absorbed into the coupling392

coefficient choice (Section 4.1). Most importantly, 3) if the atmosphere does393

respond to overly large SST anomalies in this region then the influence of394

oceanic internal variability on the trajectory of the coupled system will be395

underestimated, not overestimated, as oceanic internal variability is relatively396

weak here.397
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Fig. 6 The uncoupled response of the ABLM Control simulation to a WWB applied in

the western Pacific (with spatial structure shown with green contours in d), averaged over

25 ensemble members. (a-d) Spatial pattern of SST anomalies (◦C, color), where the solid

(dashed) contours show positive (negative) Z20 anomalies at 2m intervals. A positive (neg-

ative) Z20 anomaly indicates an anomalously shallow (deep) thermocline. The magenta box

shows the Niño 3 region. Longitude-time plots of (e) SST (◦C) and (f) Z20 anomalies (m)

averaged between ±5◦ latitude. Solid (dashed) contours show where the standard devia-

tion of the variability across the ensemble members is enhanced (decreased), with 0.005◦C

intervals for SST and 0.05m intervals for Z20.

The western Pacific WWB (in the absence of coupling) leads to a 0.25◦C398

peak warm anomaly within the Niño 3 region (black thick line in Fig. 7a),399

occurring 36 days after the peak Niño 3 Z20 anomaly (black thick line in Fig.400

7b) and 81 days after the WWB peak. However, there is large spread across401
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the ensemble members, particularly in SST, with Niño 3 anomalies between402

0.12◦C and 0.4◦C possible across the 95% confidence interval due to oceanic403

internal variability (gray shading in Fig. 7a, estimated at each time using404

a non-parametric bootstrap). The EWB ensemble produces a corresponding405

cool Niño 3 anomaly (blue lines and shading in Fig. 7a). The spread of SST406

variability across the EWB ensemble is slightly larger than that in the WWB407

ensemble (see Table 1) likely associated with an increase in the EKE of the408

TIW field (Fig. 7c) in response to the Kelvin wave. These statistics are sum-409

marized in Table 1. The enhancement in EKE for the EWB compared to the410

WWB occurs as a consequence of changes in the background flow induced by411

the Kelvin wave which alter the TIW kinetic energy balance, as discussed by412

Holmes and Thomas (2016). These changes also act to damp the SST anoma-413

lies associated with the Kelvin waves, which would be larger if the TIWs were414

absent (Holmes and Thomas, 2016). Nevertheless, it is clear that the oceanic415

internal variability impacts both the magnitude and duration of the SST re-416

sponse to the wind burst. This implies that the coupled ocean-atmosphere417

system may respond differently to a given WWB depending on the phase of418

the internal oceanic variability, as we explore in the next section.419

4 The Role of Oceanic Internal Variability in a Coupled System420

In this section, we examine the influence of oceanic internal variability on421

the evolution of a simple coupled ocean-atmosphere system. Here, in contrast422

to the previous section, the wind stress and other atmospheric variables are423

allowed to vary depending on the SST anomalies of the ocean model through424

the single-mode SVD statistical relationship discussed in Section 2.5. We first425

discuss the choice of the coupling coefficient using simulations initialized with426

historical forcing anomalies leading up to the 1997-1998 El Niño (Section 4.1)427

and then discuss the influence of oceanic internal variability on the variability428

in the forecast amplitude of events initiated by WWBs (Section 4.2).429
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Fig. 7 (a) Niño 3 SST (◦C), (b) Niño 3 Z20 (m) anomalies and (c) eastern Pacific surface

EKE (m2s−2, averaged between 7◦S and 10◦N, 150◦W and 110◦W) in response to a WWB

(gray) and an EWB (blue). Individual ensemble members are shown with thin lines. Also

shown are the ensemble mean (solid line) and 95% confidence interval (shaded) determined

using a non-parametric bootstrap over all 25 ensemble members at each time.

4.1 The choice of coupling coefficient RF
430

In order to evaluate the performance of the SVD coupling method, and choose431

a coupling coefficient RF , we examine a set of simulations based on the 1997-432

1998 El Niño. We choose the 1997-1998 event case as it is the strongest El Niño433

on record with robust air-sea coupling. We first perform an uncoupled simu-434

lation over 1996 and 1997, leading up to the event. As our control simulation435

does not contain a seasonal cycle, we perform an anomaly forced simulation,436

where the 1980-2014 climatology of the ERA Interim forcing is subtracted437
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Table 1 A summary of the Niño 3 SST anomalies and their spread due to oceanic internal

variability in the various sets of ensemble simulations. The columns indicate the control

simulation, the type of wind burst applied, the statistical coupling coefficient, the period

over which the statistics are measured, the ensemble mean Niño 3 SST anomaly (◦C), the

ensemble spread of Niño 3 SST anomalies (◦C) and the ratio of the ensemble spread to

the ensemble mean Niño 3 anomaly respectively. Every ensemble contains 25 members. The

ensemble spread is quantified as half of the range of the 95% confidence interval determined

using a non-parametric bootstrap using 2000 random bootstrap samples of the 25 ensemble

members averaged over the given time interval. Within each bootstrap sample the 2.5% and

97.5% quantiles are calculated based on the rank ordering within the sample. The numbers in

brackets represent the 95% confidence interval of the given statistic from the bootstrapping.

Control Wind Burst RF Day Niño 3 Mean (◦C) Niño 3 Spread (◦C) Spread / Mean

Uncoupled Experiments

ABLM WWB 0.0 96 0.26 (0.23, 0.29) 0.14 (0.10, 0.17) 0.51

ABLM EWB 0.0 96 -0.24 (-0.28, -0.21) 0.16 (0.13, 0.18) 0.63

Coupled Experiments

ABLM 2 WWBs 0.9 198-258 0.61 (0.55, 0.67) 0.26 (0.17, 0.34) 0.42

ABLM 2 WWBs 1.0 198-258 0.81 (0.73, 0.90) 0.34 (0.25, 0.44) 0.42

ABLM 2 WWBs 1.1 198-258 1.05 (0.93, 1.17) 0.47 (0.34, 0.60) 0.45

ABLM 2 EWBs 1.0 198-258 -0.63 (-0.71, -0.55) 0.34 (0.24, 0.43) 0.54

CORE-NYF 59-day 2 WWBs 1.0 198-258 0.67 (0.55, 0.78) 0.47 (0.38,0.55) 0.70

1994-1995 Stochastic 2 WWBs 1.0 198-258 0.56 (0.03, 1.09) 1.91 (1.69, 2.12) 3.41

from the 1996-1997 period, and then these forcing anomalies are added back438

onto the July-December ABLM Control forcing. 1996-1997 Control thus con-439

tains the influence of sub-seasonal variability, such as the strong WWBs that440

occurred in January and March of 1997 (west of 180◦E in Fig. 8a), and the441

interannual anomalies but not the seasonal cycle. These two WWBs initiate442

strong downwelling equatorial Kelvin waves which deepen the thermocline in443

the eastern Pacific (Fig. 8b) and condition the system for the growth of the444

1997-1998 El Niño event.445
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Fig. 8 (a) Zonal wind stress (Nm−2), (b) Z20 (m) and (c) SST (◦C) anomalies from a

simulation forced with observed anomalous forcing from 1996 and 1997. On the 26th of

March 1997 (black dashed line) the anomalous forcing is turned off and the simple statistical

coupling is turned on, with a coupling coefficient RF = 1.0.

The intention of this anomaly forced simulation is to initialize the system446

in a state prone to the development of an El Niño (e.g. as at the end of447

March 1997), and then see if the SVD coupling can capture the growth of448

the event. We therefore perform a coupled SVD simulation initialized from449

1996-1997 Control on March 26th 1997 (see Fig. 8). From this point onward,450

the forcing is determined from the ABLM Control background forcing and451

the SVD perturbed forcing, that depends on the current state of the SST452

anomalies (averaged over the previous 15 days). Due to the equatorial Kelvin453
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waves initiated by the WWBs prior to March 26th, the eastern Pacific SST454

warms (Fig. 8c). The wind stress in the western Pacific then weakens (Fig.455

8a) through its statistical dependence on the central and eastern Pacific SST,456

driving further changes in the thermocline depth (Fig. 8b) that amplify the457

initial perturbations. This leads to the growth of an El Niño event and the458

development of warm SST anomalies in the vicinity of 5◦C in the central and459

eastern Pacific by the end of 1997. We are therefore successful in capturing460

the first-order dynamics of the coupled system in the growth phase of an El461

Niño. Due to the simple coupling method and lack of seasonal cycle some of462

the details of the observed event are not captured. The spatial structure of463

the wind stress anomalies are fixed, while in reality the wind stress anomalies464

shift eastward as the event grows. As a consequence, the SST anomalies are465

shifted westward relative to observations. Note also that this system does not466

capture the decay phase of the event, as the lack of a seasonal cycle and the467

use of only one SVD mode does not capture, for example, the southward shift468

of wind anomalies thought to be critical for triggering decay (e.g. McGregor469

et al, 2013; Abellán and McGregor, 2015).470

The growth rate of the El Niño depends on the coupling coefficient included471

in the SVD statistical relationship [RF in Eq. (3)]. To evaluate the impact of472

this choice, we perform simulations with coupling coefficients ranging from 0.8473

to 1.25, all initialized from 1996-1997 Control on the 26th of March 1997. All474

of these simulations capture a growing eastern Pacific SST anomaly (colored475

lines in Fig. 9a) coupled with a growing western Pacific zonal wind stress476

anomaly (colored lines in Fig. 9b). While it is difficult to objectively decide477

on which coupling coefficient produces the most realistic growth, 0.9, 1.0 and478

1.1 all agree reasonably well with the growth rate of the 1996-1997 Control479

(black solid line in Fig. 9) and the observed (black dashed line in Fig. 9a) Niño480

3 anomalies. The 0.8 simulation (red line in Fig. 9) grows much more slowly481

than the others, and the 1.25 simulation (brown line in Fig. 9) grows much482

more quickly, and peaks well before the 1996-1997 Control SST peak. We thus483

examine coupling coefficients within the range 0.9− 1.1. However, in the next484
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Fig. 9 Coupled simulations based on the lead up to the 1997-1998 El Niño as a test of

the coupling coefficient included in the simple statistical coupling. (a) Niño 3 SST (◦C)

time series over 1997. The dashed black line shows the observed Niño 3 SST anomalies for

1997. The solid black line shows the Niño 3 SST anomaly for 1997 from 1996-1997 Control

forced with wind stress and other atmospheric forcing anomalies from 1996-1997. 1996-1997

Control is used as an initial condition for five coupled runs that are initialized on the 26th

of March 1997 (vertical dashed line), with a range of different coupling coefficients (colored

lines). (b) western Pacific zonal wind stress (Nm−2, averaged between 10◦S and 10◦N, 140◦E

and 180◦E) corresponding to (a).

section we find that the relative impact of oceanic internal variability on the485

coupled system is not sensitive to this choice.486

4.2 Coupled WWB ensembles487

We now perform a series of ensemble coupled forecast experiments initialized488

from different states taken every two months from ABLM Control (Fig. 10).489

Similar to the uncoupled ensemble simulations (Fig. 7), we initialize each sim-490

ulation by applying external western Pacific wind bursts [from Eq. (1)] to491

prime the coupled system for growth. To obtain realistic growth with coupling492

coefficients of 0.9− 1.1, we found it was necessary to apply two WWBs sepa-493

rated by 35-days. This is for several reasons, including the lack of anomalous494

warm water volume (WWV) build-up prior to the WWBs in our experiment495
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design (e.g. see Fedorov et al, 2015), and the relatively weak idealized Gebbie496

et al (2007) wind burst, which has roughly 1/4 the peak strength of the March497

1997 wind burst as measured by western Pacific wind stress anomalies aver-498

aged over 10◦S-10◦N, 140◦E-180◦E (compare Fig. 10c and Fig. 9c). The warm499

SST anomalies in the eastern Pacific, that result from the WWBs and sub-500

sequent equatorial Kelvin waves (e.g. see Fig. 6), amplify with time at a rate501

dependent on the coupling coefficient (compare blue, red and black lines in502

Fig. 10a). However, there is significant spread amongst the ensemble members503

(shaded confidence intervals in Fig. 10), which highlights the prominent role504

of oceanic internal variability. This spread increases with coupling coefficient.505

As mentioned above the single-mode SVD coupling does not capture the506

decay phase of ENSO, resulting in sustained growth. To quantify the impact507

of oceanic internal variability on the amplitude of coupled events we therefore508

focus on a period 5 − 7 months after the peak of the second WWB. This is509

appropriate, for example, to examine the variability near the end of the year510

for WWBs occurring at the end of June. Over this time period (indicated by511

a bar in Fig. 10a), the Niño 3 anomaly ranges from 0.5◦C to 1.2◦C over the512

95% confidence interval across ensemble members for a coupling coefficient513

of 1.0. This ±0.34◦C spread in the response is significantly greater than the514

±0.14◦C variability in the uncoupled case (Fig. 7). These statistics are sum-515

marized in Table 1. The spread is sensitive to the coupling coefficient, with516

a smaller spread of ±0.27◦C for a coupling coefficient of 0.9 (although this517

is still significantly enhanced above the uncoupled variability) and a larger518

spread of ±0.47◦C for a coupling coefficient of 1.1. However, across these dif-519

ferent coupling coefficients oceanic internal variability accounts for a consistent520

spread of approximately ±45% the size of the ensemble mean Niño 3 response521

six-months after the second WWB (last column of Table 1). This indicates522

that oceanic internal variability may contribute to the stochastic forcing of523

the ENSO cycle and potentially degrade the skill of ENSO predictions that do524

not capture this internal variability.525
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Fig. 10 Ensemble coupled runs initiated from ABLM Control with three different coupling

coefficient RF = 0.9 (red), 1.0 (blue) and 1.1 (black). (a) Niño 3 SST (◦C), (b) Niño 3 Z20

(m) anomalies and (c) western Pacific zonal wind stress (Nm−2, averaged between 10◦S

and 10◦N, 140◦E and 180◦E). The ensemble mean is shown with the solid line and the 95%

confidence interval calculated using a non-parametric bootstrap is shown with the shading.

The black dashed bar in (a) marks the time period 5-7 months after the peak of the second

WWB, where statistics are collated in Table 1.

We also conducted a series of coupled ensemble forecast experiments ini-526

tialized with two EWBs instead of WWBs (not shown). These experiments527

showed similar ensemble spread as the WWB experiments, however, the en-528

semble mean Niño 3 anomaly was negative, and somewhat smaller than in the529

WWB experiments (see Table 1). This suggests that there is an asymmetry530

between La Niña and El Niño events in our idealized coupled setup. Since531

the wind stress responds linearly to SST anomalies this asymmetry is likely532

sourced in the ocean (although there are some non-linearities in the surface533
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heat fluxes). A careful examination of the sources of this asymmetry is outside534

the scope of this article and will be left to future work. However, variations in535

TIW EKE and lateral heat fluxes are likely to play a role (An, 2009; Imada536

and Kimoto, 2012; Holmes and Thomas, 2016).537

5 How does the oceanic variability compare to atmospheric538

variability?539

In the previous section we showed that internal oceanic variability can drive540

variability in the response of our coupled system to a given series of wind541

bursts. Here, we examine how this oceanic-sourced variability may compare542

with variability sourced from internal atmospheric processes.543

5.1 High-pass filtered atmospheric variability544

We begin by considering CORE-NYF Control, which, in addition to the oceanic545

internal variability, contains high-frequency atmospheric variability from a 59-546

day high-pass filter of the CORE-NYF data set, as described in Section 2.6.547

Frequency spectra of this added wind stress forcing in the western Pacific548

show a relatively white spectrum at frequencies above the 59 day cutoff, with549

a rapid decay at lower frequencies (thick blue dashed line in Fig. 11a). This550

additional high-frequency variability in wind stress, as well as in the other551

atmospheric forcing fields, induces high-frequency variability in Niño 3 and552

Niño 3.4 SST that has an order of magnitude more variance at periods shorter553

than ∼ 90 days than ABLM Control (compare black and thick blue dashed554

line in Fig. 11b, also compare the time series of Niño 3 and Niño 3.4 SST,555

dashed lines in Fig. 5c). However, there is only a somewhat smaller boost to556

the high-frequency variability in the thermocline depth (compare black and557

thick blue dashed line in Fig. 11c, also compare the time series of Niño 3 Z20558

and Niño 3.4 Z20, dashed lines in Fig. 5f). This suggests that much of the559

additional variability coming from the atmosphere in CORE-NYF Control is560



Contribution of Tropical Instability Waves to ENSO Irregularity 29

Fig. 11 Welch power spectra of (a) western Pacific wind stress (averaged between 10◦S

and 10◦N, 140◦E and 180◦E), (b) Niño 3 SST and (c) Niño 3 Z20 from the various control

simulations including ABLM Control with no atmospheric variability (black solid), with

additional high-pass filtered atmospheric variability (blue dashed lines), with additional

stochastic atmospheric variability estimated as described in Section 2.6 (green solid lines)

and from 1996-1997 Control with full atmospheric forcing anomalies over the 1996-1997

period (yellow dotted lines). All spectra are calculated from four-year periods except for

1996-1997 Control which is two years. Note that the y-scales of each of the three subplots are

the same to facilitate comparison of the range of variability magnitudes between variables.

through variations in the air-sea heat flux that influence the temperature in561

the mixed-layer, as opposed to variability in the wind stresses impacting the562

thermocline depth through wind-stress curl and remotely forced equatorial563

waves.564
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Despite the drop-off in the wind stress spectra at periods below 90 days,565

there is still a boost in the low frequency variability of both SST and thermo-566

cline depth (compare black and thick blue dashed lines at periods below 90567

days in Fig. 11b,c). Note that an additional control simulation forced with 59-568

day high-pass filtered ERA Interim forcing over the 1994-1995 period (looped569

to produce a four-year control simulation, see Fig. 1) gives a similar, if slightly570

smaller, level of variability to CORE-NYF Control (compare thick and thin571

blue dashed lines in Fig. 11). Also, using a 29-day high-pass cutoff instead of572

a 59-day high-pass cutoff produces less low frequency variability as expected573

(compare thin dot-dashed and thick blue dashed lines in Fig. 11). In this case,574

the low frequency variability in SST and Z20 is mostly associated with purely575

oceanic-intrinsic processes (compare blue dot-dashed and black lines in Fig.576

11b,c).577

The additional variability coming from the 59-day high-pass CORE-NYF578

forcing is likely to enhance the ensemble spread in the trajectory of the coupled579

forecasts. To test this, we conduct additional ensemble forecast experiments,580

referred to as the CORE-NYF Ensemble, with the CORE-NYF high-frequency581

forcing and initiated from CORE-NYF Control (see Fig. 1). To compare to the582

ABLM Control coupled experiments (Fig. 10), we maintain the same experi-583

mental design initiating each experiment with two WWBs. We use a coupling584

coefficient of RF = 1.0. Initially the Niño 3 SST ensemble spread is 2−3 times585

larger in the CORE-NYF Ensemble than in the ABLM Ensemble (compare586

blue and gray confidence intervals at day 0 in Fig. 12a). Previously, we have587

seen that the coupling enhances the ensemble spread as the coupled anomalies588

grow. However, the growth in the ensemble spread in Niño 3 in the CORE-589

NYF Ensemble is minimal, reaching ±0.47◦C 5−7 months following the second590

WWB and exceeding that in the ABLM Ensemble (±0.34◦C) by a factor of591

only 1.4 (see Table 1). This is likely because the impact of the high-frequency592

forcing on the thermocline depth is more muted than its direct influence on593

SST, and it is this variability in the thermocline depth that can lead to more594

sustained SST anomalies. The high-pass filtered CORE-NYF western Pacific595
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Fig. 12 As for Fig. 10 except comparing the results of two WWB coupled experiments

(with coupling coefficient RF = 1.0) with (blue) and without (black) additional CORE-

NYF 59-day high-pass atmospheric forcing.

wind stress variability is unable to create sustained large-amplitude equatorial596

waves that have a strong signature in eastern Pacific thermocline depth.597

In conclusion, in this idealized experimental setup with high-frequency at-598

mospheric variability we find that the oceanic internal variability provides599

much of the variability in forecast event amplitude. If we take the ABLM En-600

semble spread as representative of the oceanic internal variability, which is601

also present in the CORE-NYF Ensemble, then in the CORE-NYF Ensemble602

72% of the 5 − 7 month Niño 3 ensemble spread is associated with oceanic603

internal variability.604
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5.2 Stochastic estimate of atmospheric variability605

One reason that the oceanic internal variability contributes more than at-606

mospheric variability to the spread in forecast amplitude in the CORE-NYF607

Ensemble may be because the use of a high-pass filter effectively removes all608

of the low frequency atmospheric forcing (e.g. Fig. 11a at periods longer than609

90 days). Some of the removed signal could potentially be associated with the610

low frequency tail of stochastic internal atmospheric variability (Levine and611

Jin, 2017). Therefore, we also consider surface forcing derived using the SVD612

method discussed in Section 2.6.2 which isolates the component of atmospheric613

variability that is apparently independent (or at least not linearly-dependent)614

on the ocean or coupled variability. We performed two additional control sim-615

ulations with added stochastic forcing taken from the periods 1994-1995 and616

1996-1997. Each of these simulations was run for five years (looping over the617

1994-1995 and 1996-1997 periods), initialized from ABLM Control, with anal-618

ysis here coming from the last four years (see Fig. 1). The wind stress forcing619

associated with these experiments contains a similar level of high-frequency620

variability as the high-pass filtered cases, but does not decay at low frequen-621

cies (compare green solid and blue dashed lines in Fig. 11a). Correspondingly,622

there is around an order of magnitude more variance at low frequencies in both623

Niño 3 SST and thermocline depth (compare green solid and blue dashed lines624

in Fig. 11b,c at periods below 90 days). Note that the 1996-1997 period has625

a higher level of low frequency wind stress variability, but similar levels of626

low frequency SST and thermocline depth variability (compare green thin and627

thick lines in Fig. 11a).628

The enhanced low-frequency variability under the stochastic atmospheric629

forcing leads to a large increase in the ensemble spread of forecast experiments630

performed using the 1994-1995 stochastic forcing (blue shading in Fig. 13). In631

this 1994-1995 Stochastic Ensemble, the spread in the initial states and the632

variations in the stochastic atmospheric forcing across ensemble members is633

large enough such that some ensemble members end up with negative Niño634
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Fig. 13 As for Fig. 10 except comparing the results of two WWB coupled experiments

(with coupling coefficient RF = 1.0) with (blue) and without (black) additional 1994-1995

stochastic atmospheric forcing (see Section 2.6.2).

3 anomalies despite the two externally-imposed WWBs. Clearly, here the en-635

semble spread induced by the atmospheric forcing variability is larger than636

that coming from intrinsic oceanic processes. Again quantified 5 − 7 months637

following the second WWB, the 1994-1995 Stochastic Ensemble Niño 3 SST638

forecast spread is ±1.91◦C compared to the ±0.34◦C in the ABLM Ensemble639

(see Table 1). Therefore in this case oceanic intrinsic variability contributes640

around 18% of the ensemble spread. While this is much less than the 72% con-641

tribution found using the high-pass filter, it still suggests that intrinsic oceanic642

processes may make an appreciable contribution to the stochastic forcing of643

ENSO.644
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6 Summary and Conclusions645

We have examined the impact of oceanic internal variability, associated with646

Tropical Instability Waves, on ENSO irregularity and predictability using a647

hybrid coupled model. We have focused on the July-December season when648

oceanic internal variability is seasonally largest and when ENSO events typi-649

cally grow. By eliminating all sources of internal atmospheric variability (through650

the use of a simple atmospheric model) we have quantified the impact of651

oceanic internal variability on the growth rate and amplitude of coupled events652

subsequent to a given series of wind bursts in the western Pacific. In this ide-653

alized setup we find that oceanic internal variability can result in an ensemble654

spread of approximately ±45% of the size of the ensemble mean Niño 3 SST655

anomaly for an El Niño event (Table 1). For example, using a statistical cou-656

pling coefficient of 1.0 the Niño 3 SST anomaly six-months following the second657

of a series of two WWBs can range between 0.5◦C to 1.2◦C due to the initial658

state and evolution of the TIW field (Fig. 10).659

We have also compared the variability coming from oceanic internal pro-660

cesses to atmospheric internal variability, typically thought to provide the661

stochastic forcing of the ENSO cycle. Using various estimates of this atmo-662

spheric internal variability, we found that oceanic intrinsic processes contribute663

between 18% and 72% of the ensemble spread in the idealized coupled fore-664

casts (Table 1 and Figs. 12 and 13). The upper limit of 72% corresponds to665

when atmospheric internal variability is estimated by retaining only frequen-666

cies faster than two-months in the atmospheric forcing. As such a high-pass667

filter removes the low-frequency tail of the atmospheric noise, we expect that668

72% is an overestimate of the potential influence of oceanic variability. The669

lower limit of 18% is obtained in contrast by removing all atmospheric forc-670

ing variability that is linearly associated with SST variability (using an SVD671

method; see Section 2.6). Therefore, this could potentially be an underestimate672

of the contribution of oceanic noise, as the forcing still includes atmospheric673

variability that is non-linearly related to SST variability.674
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The contribution of oceanic internal variability to ENSO irregularity re-675

ported here is derived from an idealized model setup and relies on a number of676

simplifying assumptions. Firstly, our simulations focus on the strong TIW sea-677

son and do not contain a seasonal cycle in the mean circulation, known to be678

crucial for ENSO dynamics (Tziperman et al, 1997; Stein et al, 2014; Abellán679

and McGregor, 2015). Secondly, our ensemble simulations all start from initial680

neutral states without anomalous build-up or deficit of WWV. Such initial681

WWV anomalies are known to be important for the development of future682

events (Meinen and McPhaden, 2001; Fedorov et al, 2015) and, combined with683

seasonal variations, can impact the magnitude of the SST anomalies resulting684

from WWBs (Puy et al, 2016). Thirdly, our statistical atmosphere was simpli-685

fied, using a single SVD mode that captures the first-order atmosphere-ocean686

coupling. The statistical coupling also depends on a coupling coefficient which687

is difficult to constrain, although we found that the impact of oceanic internal688

variability on the Niño 3 SST ensemble spread relative to the ensemble mean689

in the ABLM Ensemble was insensitive to this coefficient (Table 1). Despite690

these shortcomings, our model and experimental design serve to provide a691

first order estimate of the contribution of oceanic internal variability to ENSO692

growth and irregularity. More work is required to more precisely quantify this693

effect. However, such quantification remains difficult in more complex coupled694

systems as it requires a method to attribute portions of the observed coupled695

variability to either oceanic or atmospheric processes.696

An additional factor that we have not examined in this study is the influ-697

ence of TIWs on small-scale wind variability in the central and eastern Pacific698

(e.g. Chelton et al, 2001; Narapusetty and Kirtman, 2014; Zhang, 2014). These699

previous studies show that small-scale atmospheric variability can be driven700

directly by TIW SST anomalies, and may also impact on the irregularity and701

predictability of the coupled system (Jochum et al, 2007a).702

Our results suggest that it is important to correctly represent small-scale703

non-linear oceanic processes in order to successfully capture all the processes704

that contribute to ENSO irregularity. A correct representation of small-scale705
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oceanic processes requires an ocean model with resolution higher than the706

typical 1◦ used in many global coupled models (Graham, 2014). These models707

may therefore miss a potentially important component of the stochastic forcing708

of ENSO contributing to an under-representation of ENSO in these models709

(see e.g. Santoso et al, 2017). The under-representation of TIWs may also710

impact seasonal forecast ensembles that employ relatively low resolution ocean711

components (also see Ham and Kang, 2011). The contribution of TIWs to712

ENSO should thus be more carefully considered in future modeling studies713

and observations.714
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Appendix: The Atmospheric Boundary Layer Model725

As discussed in Section 2, we use an Atmospheric Boundary Layer Model726

(ABLM) to freely determine the air temperature Tair and air humidity qair.727

Our implementation is based on the cheapAML model of Deremble et al (2013),728

following earlier work by Seager et al (1995). The model solves single layer729

advection-diffusion equations for Tair and qair,730

∂Tair
∂t

= −∇h · (UTair − κ∇hTair) +
1

ρaCph

(
F+ − F−

)
− 1

rT
(Tair − Tb) ,

(A.1)

731

∂qair
∂t

= −∇h · (Uqair − κ∇hqair) +
1

h

(
F+
Q − F

−
Q

)
− 1

rT
(qair − qb) , (A.2)732

733
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where U is the prescribed 10m wind field, κ is an isotropic horizontal diffu-734

sivity, ρa is the density of air, Cp is the heat capacity of air, h is the spatially735

variable depth of the atmospheric boundary layer, rT is a restoring time-scale736

that is non-zero only over land (where it takes the value 0.1 days) and Tb and737

qb are background restoring fields for air temperature and humidity.738

As discussed in Deremble et al (2013), the imbalance of heat loss from the739

top of the boundary layer, F+, and heat gain from the ocean F− are parame-740

terized using long-wave radiative fluxes and the air-sea sensible heat flux (solar741

radiation and the latent heat flux both pass through the boundary layer at742

first order). Heat is lost via long-wave radiation from the top of the bound-743

ary layer using an average lapse rate of 0.0098◦Cm−1. The upper and lower744

fluxes of moisture, F+
Q and F−Q are represented by evaporation and entrain-745

ment at the top of the boundary layer. The advecting wind-velocities U , the746

boundary and over-land air temperature and air humidity and the spatially747

variable boundary layer depth h are taken from the ERA Interim 1980-2014748

July-December average discussed above. All air-sea fluxes are determined us-749

ing the ROMS bulk flux routines, based on Fairall et al (1996). Due to the750

constant wind speeds and lack of storm systems, we use a large diffusivity of751

κ = 5× 105m2s−1.752

In regions with high SST, the air temperature determined by the ABLM753

has a tendency to warm too much due to the absence of convection. This ex-754

cessive warming in convective regions was also noted by Deremble et al (2013),755

but they did not suggest a solution other than restoring. In order to avoid this756

unphysical warming we include a simple threshold on the surface air temper-757

ature, chosen as 28◦C. This crudely models the effects of convection, which758

above this threshold mixes the air column vertically until the surface air tem-759

perature is once again below the threshold, returning the system to marginal760

stability. The presence of a threshold SST of around 27 − 28◦C above which761

convection occurs is well supported in the literature (e.g. Graham and Bar-762

nett, 1987; Johnson and Xie, 2010). Wind convergence also plays an important763

role in modulating convection (Graham and Barnett, 1987). However, as we764
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have a temporally constant wind field and do not resolve any synoptic scale765

variability we do not include a parameterization for this effect.766

Our implementation of the ABLM includes several tuning parameters, such767

as the effective height of upwards long-wave radiation out of the boundary768

layer, the convective air temperature threshold and the constant of propor-769

tionality α relating the entrainment of humidity at the top of the boundary770

layer to the surface fluxes. The best parameter set was found to be α = 0.3771

(compared to the value of 0.25 used by Deremble et al (2013)), a 28◦C thresh-772

old and long-wave radiation from the top of the boundary layer. The remaining773

biases include a tendency to be too warm and wet in the warm and wet re-774

gions and too cool and dry in the cool regions (as also noted by Deremble et al775

(2013) in a fixed SST experiment). This bias is likely due to the absence of776

low-cloud feedbacks.777
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