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ABSTRACT

In situ observations obtained over the last several decades have shown that the intensity of turbulentmixing

in the abyssal ocean is enhanced toward the seafloor. Consequently, a new paradigm has emerged whereby

dianeutral downwelling dominates in the ocean interior and dianeutral upwelling only occurs within thin

bottom boundary layers. This study shows that when mixing is bottom intensified the net abyssal dianeutral

transports and the stratification can depend on subtle features of the seafloor geometry. Under an assumption

of depth-independent net dianeutral upwelling, small changes in the curvature of the seafloor can result in

interior stratification that is bottom intensified, uniform, or surface intensified. Further, when the net dia-

neutral transport is allowed to vary in the vertical, changes in the seafloor slope and bathymetric contour

length with height can drive lateral exchange between the boundary layer and interior, with particularly

strong lateral outflows predicted at the crests of midocean ridges. Finally, using a realistic neutral density

climatology the authors suggest that the increase in the perimeter of abyssal neutral density surfaces with

height drives much of the dianeutral upwelling at depths greater than 4 km, while the increase in the slope of

the seafloor at shallower depths acts to oppose upwelling. These results add to a growing body of literature

highlighting the key control of seafloor geometry on the abyssal overturning circulation.

1. Introduction

The turbulent mixing of buoyancy across neutral

density surfaces in the ocean interior is thought to be a

major control of both the vertical stratification and of the

rate at which the deep ocean reservoirs of carbon and

heat are renewed (Watson and Naveira Garabato 2006;

Ferrari et al. 2014; Mashayek et al. 2015). Therefore, a

major focus has been on understanding how, where, and

how much the deep ocean mixes. The seminal study of

Munk (1966) used a simple one-dimensional advection–

diffusion balance to show that a vertical diffusivity of

1024m2 s22 was compatible with the observed Pacific

deep hydrography. More recent discoveries, including

the adiabatic upwelling of deep waters in the Southern

Ocean (Toggweiler and Samuels 1995; Marshall and

Speer 2012) and entrainment at depth into sinking

bottom water plumes (Hughes and Griffiths 2006;

Stewart et al. 2012), have called into question the need

for such a strong diffusivity. Nevertheless, numerical

simulations (Oka and Niwa 2013; Mashayek et al. 2015;

Melet et al. 2016) and inverse models (Lumpkin and

Speer 2007) suggest that the consumption of Antarctic

Bottom Water (AABW) and the rate of overturning

of the abyssal ocean, below 2000m, depend strongly

on both the magnitude and spatial structure of

turbulent mixing.

Observations of turbulence in the abyssal ocean have

shown that the turbulent kinetic energy dissipation rate

« is generally bottom intensified (Toole et al. 1994;

Polzin et al. 1997; Ledwell et al. 2000; St. Laurent et al.

2012; Waterhouse et al. 2014; Sheen et al. 2014), owing

to a number of processes including internal tide (St.

Laurent and Garrett 2002; Garrett and Kunze 2007) and

lee wave (Nikurashin and Ferrari 2011; Broadbridge

et al. 2016) generation and breaking over rough topog-

raphy, trapping of internal waves near the seafloor at
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critical layers (Winters et al. 2011; Holmes et al. 2016),

and strait mixing (Bryden and Nurser 2003). In turn this

implies that the magnitude of the turbulent buoyancy

flux per unit area B is also bottom intensified, where B is

typically related to « via B 5 G« and the mixing effi-

ciency G (Osborn 1980) is generally assumed constant in

the interior (see section 2 for more discussion of this

point). The bottom intensification of B has important

consequences for the dianeutral velocity, or the fluid

velocity crossing a neutral density surface, given for a

linear equation of state (McDougall 1984) by

e5
dB
db

, (1)

where b is the buoyancy related, for example, to the

neutral density of Jackett and McDougall (1997).

Equation (1) implies that the dianeutral transport is

downward, toward denser fluid, within the interior

where B decreases with height. So how can mixing drive

the upwelling necessary to balance the downwelling of

dense waters? The solution to this apparent contradic-

tion comes within the bottom boundary layers (BBLs).

To satisfy the boundary condition at the seafloor, Bmust

go to zero (or to the geothermal buoyancy flux) within

the well-mixed BBL (Phillips 1970; Ledwell et al. 2000;

Garrett 2001; Umlauf andBurchard 2011), and thus fluid

parcels gain buoyancy there. If the seafloor is sloped, this

gain in buoyancy drives an upwelling volume flux along

the boundary at steady state. In the interior above

the BBL, within what some authors have termed the

‘‘stratified mixing layer’’ (SML; Kunze et al. 2012;

McDougall and Ferrari 2017), light waters are trans-

formed into denser waters. This near-boundary circu-

lation has been recognized in observations (Polzin et al.

1997; St. Laurent et al. 2001; Kunze et al. 2012).

The bottom intensification of mixing suggests that the

geometry of the ocean’s seafloor plays a controlling role

in returning dense waters toward the surface (Wunsch

1970). The net dianeutral mass transport crossing a

neutral density surface is given by the following (Walin

1982; Iudicone et al. 2008; Klocker andMcDougall 2010):

E
net

5
dF

db
, (2)

where

F(b)5

ð ð
B(x, y,b) dx dy, (3)

is the buoyancy flux integrated over the same surface and

we have ignored the geothermal heat flux. The density

surface over which the area integration of Eq. (3) is

performed lies in the ocean interior, and this density

surface is not followed up to the sea surface inside the

sinking plume of dense waters formed in the polar regions.

Rather, the area integration is stopped at the outside edge

of this sinking plume, such that Enet must be upward to

balance the downwardmass transport within the plume [as

explained inMcDougall and Ferrari (2017, their Fig. B1)].

According to Eq. (2) this requires that F increase with

height (buoyancy). Because F depends closely on the area

of a given neutral density surface that lies close to the

seafloor where the mixing is strong (Klocker and

McDougall 2010), whether or not this increase is achieved

depends upon height changes of this mixing area. In turn,

this area depends on several geometric factors, including

the slope of topography, with a steeper slope implying a

smaller area of a neutral density surface close to the

bottom (Fig. 1a), and the total perimeter or circumfer-

ence of a neutral density surface (Fig. 1b).

A number of recent articles have begun to evaluate

the importance of seafloor geometry for the abyssal

overturning circulation. De Lavergne et al. (2016b,a)

FIG. 1. Schematic demonstrating the two geometric factors that

influence the area-integrated buoyancy flux F when mixing is

bottom intensified. The vertical structure and peak magnitude of

the local buoyancy flux are assumed not to vary, in order to isolate

the role of topography. (a) Topographic slope: there is a larger

near-bottom area on a given isopycnal where there is active mixing

(magenta region) over a gentle slope compared to a steep slope,

and therefore a larger area-integrated buoyancy flux F. (b) Topo-

graphic circumference: in a conical ocean with a constant slope

there is a larger near-bottom area, and therefore F, at the top of the

cone where the circumference is large compared to the base of the

cone where the circumference is small.
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combine parameterizations for abyssal ocean sources of

mixing with a climatological neutral density distribution

to show that the transformation of AABW into lighter

waters is strongly sensitive to the vertical structure of the

buoyancy flux. This conclusion is supported by the

global, energetically consistent numerical simulations of

Melet et al. (2016). For a bottom-intensified buoyancy

flux, de Lavergne et al. (2016b) show that the incrop area

of neutral density layers into the topography exerts a

strong control on the dianeutral circulation, with the

peak incrop area at around 4000m, or at a neutral

density of;28.11kgm23, corresponding to a peak in net

dianeutral upwelling. This idea was further developed

by de Lavergne et al. (2017), who show that it is con-

sistent with the observed distribution of abyssal radio-

carbon and ocean ventilation patterns.

Ferrari et al. (2016) used a series of idealized numerical

simulations to examine the influence of the vertical struc-

ture in the buoyancy flux and the role of sloping bound-

aries. They found that with bottom-intensified mixing a

sloped seafloor produced a more realistic interior stratifi-

cation than a flat seafloor. McDougall and Ferrari (2017)

applied a buoyancy budget approach in density co-

ordinates in the abyssal ocean to predict that up to 5 times

as much volume is upwelled in the BBLs as is upwelled in

the net. This ‘‘amplification factor’’ was obtained using a

diagnostic relationship that assumed knowledge of the net

dianeutral volume transport but did not explicitly include

the dianeutral diffusive mixing processes that drive this

transport. McDougall and Ferrari (2017) also discuss how

these mixing processes are controlled by the seafloor ge-

ometry, and consider a number of idealized seafloor con-

figurations, including two-dimensional oceans, conical

seamounts, and conical oceans.

Many questions remain unanswered. The examples

given in McDougall and Ferrari (2017) consider mostly

constant slope geometries. When variations in, for exam-

ple, slope are permitted, more complex features can

emerge, such as the potential for lateral exchanges of fluid

between the boundary layers and interior (Phillips et al.

1986; McDougall 1989; Garrett 1991; Visbeck and Rhein

2000; Kunze et al. 2012; Dell and Pratt 2015). Such vertical

(or upslope) variations in the geometric, mixing, and

stratification parameters were not considered in detail by

the early boundary mixing papers of Wunsch (1970),

Phillips (1970), Thorpe (1987), Garrett (1990), and others.

In this article we seek to build on these previous

studies, asking the following questions: 1) What aspects

of the topography influence the dianeutral circulation?

McDougall and Ferrari (2017) suggested that the verti-

cal structure in both slope and perimeter play a role, but

did not elaborate. 2) How does topography influence the

interior stratification? 3) What dianeutral circulations

should we expect around major topographic features

such as seamounts and midocean ridges?

We address these questions by considering some simple

geometries and examining the relationship between the net

dianeutral transport Enet, the area-integrated buoyancy flux

F and the stratification db/dz implied by Eq. (2). That is, we

will specify two of these parameters and solve for the third.

We will not consider the momentum budget, and to make

the system analytically tractable wewill assume that neutral

density surfaces are flat in the interior. Furthermore, in or-

der to isolate the role of topographywewill assumea simple

vertical structure for the diffusive buoyancy flux and assume

that its peak magnitude is uniform laterally. This idealized,

process-oriented approach contrasts with box inverse

methods (e.g.,Ganachaud andWunsch 2000) in thatmixing

is specified rather than inferred, yielding different yet

complementary information about stratification, circula-

tion, and their relationship to topography.

Given the simple system captured by Eq. (2) and a

specified bottom-intensified buoyancy flux, we will show

that subtle changes in the curvature of topography can

have important implications for the abyssal stratification

(section 3) and dianeutral circulation (section 4). We

compare results using these bottom-intensified buoy-

ancy fluxes to those obtained if the buoyancy fluxes are

constant with height (implying dianeutral transport only

in the BBL) or if the vertical diffusivity is constant (as

considered by Munk 1966). We then apply some of

these ideas to the Mid-Atlantic Ridge (MAR) and a

section of the South Pacific (SP), examining how the

topography in these regions may influence the dia-

neutral circulation in their vicinity (section 5). Finally,

for the global ocean we decompose the vertical varia-

tions in the incrop area into averaged variations of the

seafloor slope and the perimeter of neutral density

surfaces, suggesting that it is an increase in the perim-

eter of neutral density surfaces (rather than changes in

slope) that drives much of the upwelling of dense wa-

ters in the abyss (section 6).

2. Analytical framework

We begin by describing the theoretical framework on

which the rest of the article is based. We will look for

a steady-state dianeutral circulation where the interior

buoyancy b varies only with height z. This is a reasonable

approximation at regional scales in the abyssal ocean, and

the results can be generalized to curved neutral density

surfaces if the topographic slopes and areas are re-

interpreted in buoyancy space. For example, a flat bottom

underneath a sloping neutral density surface corresponds

to a sloped bottom in buoyancy space, termed pseudo-

hypsometry by de Lavergne et al. (2016b).
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Following McDougall and Ferrari (2017), we

consider a bottom-intensified buoyancy flux per unit

area B(x, y, z) with the following form (Fig. 2):

B(x, y, z)5B
0
[z2 h(x, y)]/h

BBL
, z2 h(x, y), h

BBL
,

(4)

and

B(x, y, z)5B
0
expf2[z2 h(x, y)2 h

BBL
]/dg ,

z2 h(x, y). h
BBL

. (5)

The buoyancy flux per unit area B increases linearly

from zero at the bottom boundary [z 5 h(x, y), where

h(x, y) is the ocean depth] to B0 at the top of a BBL of

thickness hBBL [note that z is zero at the sea surface and

h(x, y) is negative]. Above the BBL B decreases expo-

nentially with a scale height d (Fig. 2), in approximate

correspondence with available in situ observations

(St. Laurent et al. 2002; Kunze 2017; Waterhouse et al.

2014). As discussed byMcDougall and Ferrari (2017), this

choice of an exponential is one of analytical convenience,

and a different choice of structure, providing it decays in

the vertical, will yield similar qualitative results.

Our choice of vertical structure for B is based on ob-

servations of the turbulent kinetic energy dissipation

rate « and an assumption of a weakly varying mixing

efficiency G. While the mixing efficiency is known to

vary in the interior deep ocean (Ivey et al. 2008;

Mashayek et al. 2017; Gregg et al. 2018), these variations

in G are unlikely to override the vertical decay ofB in the

interior and therefore qualitatively alter our results.

Quantitatively, of course, variations in the mixing effi-

ciency may play a role by altering the decay scale d or

the peak buoyancy fluxmagnitudeB0 (de Lavergne et al.

2016a; Mashayek et al. 2017).

Throughout this article we will consider B0 to be lat-

erally uniform. While this is a gross simplification, as for

example mixing is observed to be stronger over regions

of rough topography (Waterhouse et al. 2014), it allows

us to isolate the role of seafloor geometry. McDougall

and Ferrari (2017) considered four factors that could

drive the net upwelling of dense waters [their Eq. (34)].

These factors were changes with buoyancy of 1) B0, 2)

the topographic slope, 3) the topographic circumfer-

ence, and 4) the vertical decay scale d. In this article we

focus on the geometrical factors 2 and 3.

The diffusive buoyancy flux per unit area B drives a

net (area integrated) vertical dianeutral transport Enet,
related to the magnitude of the area-integrated buoy-

ancy flux F(b) [Eq. (3)] through Eq. (2). The relation in

Eq. (2) can be achieved through different configurations

of topography and interior stratification providing that

dF

dz
5 E

net
(z)

db

dz
. (6)

Equation (6) constrains F(z) given upwelling and strat-

ification profiles. However, underlying F(z) here is the

topography, allowing us to make the counterintuitive

step of solving Eq. (6) for the topography from upwell-

ing and stratification profiles (section 3).Wewill see that

such an approach yields a number of important insights

that would not be obtained if the topography was com-

pletely specified a priori.

To solve Eq. (6) for the topography, we first make some

broad assumptions about the form of that topography.We

will consider a number of idealized topographic configu-

rations (Fig. 3): a two-dimensional trough or ridge, where

the topography is uniform in the Cartesian x direction with

vertical sides at the two ends, and a three-dimensional

circular bowl or seamount, where the topography is uni-

form in the azimuthal x direction and specified as a func-

tion of the radius y. For the 2D trough and ridge the

circumference is constant [L(y) 5 Lc], while for the 3D

FIG. 2. The vertical structure of the turbulent buoyancy flux per

unit areaB used in this article as a function of height above bottom.

The B increases linearly to a maximum value of B0 at the top of the

BBL of height hBBL and then decreases exponentially with scale

height d.
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bowl and seamount, the circumference changes linearly

with y [L(y) 5 2py].

Given the above assumptions we solve Eq. (6) for the

topography (see appendix A for details):

B
0
L
dr

dz
5

dF

dz
1

F

d
, (7)

where dr/dz is the inverse topographic slope and F(z) on

the RHS is known through an integral of Eq. (6),

F(z)5

ðz
2H1hBBL

db

dz
E
net

dz . (8)

The topographic radius r(z), the inverse function of z5
h(y) 1 hBBL, can then be obtained from Eq. (7) via an

integral and finally inverted to obtain h(y).

Equation (7) is the key equation of this article, and

there are several features that are worth highlighting.

First, this equation becomes singular when the topog-

raphy is flat where the inverse slope dr/dz / ‘. In this

case our flat interior neutral density surfaces are parallel

to the boundary and there can be no along-boundary

dianeutral advection to balance the near-bottom con-

vergence of the diffusive buoyancy flux (Mashayek et al.

2015). In this situation a stratified steady state is not

possible and the geometry of the neutral density surfaces

would change, as observed in the flat-bottom simula-

tions of Ferrari et al. (2016).

Second, the LHS of Eq. (7) is proportional to the

vertical derivative of the total area of our simple ocean

basin:

dA

dz
5L

dr

dz
, (9)

where

A5

ðr(z)
y0

L(y) dy . (10)

The area derivative dA/dz is related to both the incrop

area of de Lavergne et al. (2016b), given by dA/db, and the

area within the SML, Amix, discussed by McDougall and

Ferrari (2017) (see appendixA) and shownby themagenta

regions in Fig. 1. Equations (7) and (8) provide us with a

simple relationship between seafloor geometry, the strati-

fication, and dianeutral upwelling. In fact, under the limit

of weak vertical variations in the slope and circumference

(with respect to d such that d/dz � 1/d; see appendix A),

dF/dz is small relative to F/d in Eq. (7), and we find that

FIG. 3. Schematics of the four simplified geometries considered in this article. They differ by whether the to-

pography shoals (trough, bowl) or deepens (ridge, seamount) away from y0 and whether the symmetry is Cartesian

(trough, ridge), where the circumferenceL(y) is constant, or circular (bowl, seamount), where the circumference

L(y) increases linearly with y.
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F(z)’B
0
d
dA

dz
’B

0
A

mix
, (11)

indicating that F is simply proportional to the area of

active mixing in the SML Amix, as intuition (and Fig. 1)

suggests.

3. Uniform net dianeutral upwelling

We now examine the relationship between the strat-

ification of the ocean interior and the topography under

the assumption of a depth-independent net dianeutral

upwelling Enet(z) 5 Enet. This is equivalent to assuming

that there is no entrainment or detrainment into the

descending dense bottom water plume, so that, effec-

tively, the source of bottom water can be regarded as

entering at the bottom of the ocean through an imper-

vious pipe. This case was considered in Rhines and

MacCready (1989) and McDougall and Ferrari (2017).

We examine an interior stratification with the fol-

lowing form:

db

dz
5N2

0e
(z1H2hBBL)/s , (12)

allowing us to consider three possibilities: exponentially

increasing (s. 0), decreasing (s, 0), and constant (s/‘)
stratification. Given this stratification and the assumption

of depth-independent net dianeutral upwelling, we can ob-

tain formulas for the topographic slope of the trough, bowl,

ridge, and seamount geometries required for a consistent

solution (see appendix A). For plotting purposes we make

the specific parameter choices d 5 500m, hBBL 5 100m,

Enet5 10Sv (1Sv[ 106m3s21), B05 53 1029m2s23, and

H 5 5000m. The constant N2
0 is chosen to yield a strat-

ification of 1026 s22 at a depth of 3000m, with a scale

height s 5 1500m for the nonconstant cases. The value

of B0 is chosen such that the topography h(y) rises from

5000 to ;1000m over a lateral distance of ;4000km.

The length of the 2D domain Lc is chosen so that the

radial extent approximately matches that of the circular

domain. Qualitative conclusions, discussed below, do not

depend on the specific parameter choices made.

a. The trough and bowl

We first consider the trough and bowl geometries. We

find that the trough topography has a negative curvature

for all three stratifications, such that the slope always

decreases with height (or the inverse slope dr/dz always

increases with height; Figs. 4c,i,o). The circumference is

constant in this 2D geometry, meaning that this negative

curvature is the only way in which the area of an iso-

pycnal near the boundary (the SML area Amix; magenta

line in Figs. 4b,h,n), and therefore the area-integrated

buoyancy flux F, can increase with height to permit net

upwelling dF/db . 0.

The stratification does however influence the magni-

tude of the slope curvature. Given constant upwelling,

larger stratification requires larger buoyancy gain dF/dz.

Thus when the stratification increases with height (top

row in Fig. 4), the change in slope with height is more

rapid. In contrast, when the stratification decreases with

height (bottom row in Fig. 4) the curvature need not be

strong, and, in fact, the slope asymptotes to a constant as

the stratification becomes weak. For constant stratifi-

cation the slope decreases linearly (solid line in Fig. 4i)

to match the linearly increasing F (black line in Fig. 4h).

For the bowl geometry the circumference is not con-

stant, and thusAmix can varywith height even if the slope is

constant (Fig. 1b). Consequently, the bowl requires less

negative slope curvature than the trough to support the

same upwelling and stratification. For the exponentially

increasing stratification (Fig. 4e), the slope curvature must

still be negative as for the trough. However, for constant

stratification, the bowl slope is constant (once above the

base of the bowl; dashed line in Fig. 4i) because the linear

increase in F can be achieved simply through the linear

dependence of the bowl’s circumference on radius and

height. For the exponentially decreasing stratification

(Fig. 4q), the bowl must be positively curved in order to

counteract the increase in circumference with height.

Note that these trends are not strictly followed near

the deepest part of the domain. Here, there is a nonzero

buoyancy flux at all lateral locations y, and thus Amix is

equal to the total area of the basin (neglecting the small

area within the BBL) instead of being proportional to its

height derivative [Eq. (A3)]. This important effect will

be discussed in more detail in section 5.

b. The ridge and seamount

Similar geometric constraints apply to the ridge and

seamount geometries (Figs. 3c,d). In fact, the ridge slope

is identical to the trough, other than being of the opposite

sign (Figs. 5d,j,p). Therefore, as before, the slope always

decreases to allow an increase in Amix with height, cul-

minating in a sharp ridge crest. However, the seamount

slope differs significantly from the bowl (cf. dashed lines

in Figs. 5c,i,o to Figs. 4c,i,o). To sustain upwelling up to its

crest, the seamount must be negatively curved for all

three stratifications in order to compensate for the re-

duction in its circumference. The reduction in the cir-

cumference of a seamount approaching its crest generally

acts to reduce the area of mixing toward the top of the

seamount, suggesting that a net downwelling of fluid

should surround the seamount flanks, as discussed by

McDougall (1989) and McDougall and Ferrari (2017).

However, McDougall (1989) took the radial width of the
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annular area of the mixing region surrounding a sea-

mount to be independent of height, whileMcDougall and

Ferrari (2017) treated only a conical seamount of fixed

slope at all heights. The examples we have discussed here

overcome these past unrealistic assumptions, showing

that it is possible to get upwelling below the crest of a

seamount providing that the reduction in the slope with

height dominates the reduction in the circumference.

Note that above the crests of both the ridge and sea-

mount, upwelling is not possible as F decreases with

height (see section 4).

c. The amplification factor

Wenowdiscuss the behavior of the dianeutral transports

in the BBL, SML, and the net (Figs. 4f,l,r and 5f,l,r). The

net dianeutral transport in the SML is given by the fol-

lowing [obtained from Eqs. (5) and (A1)]:

E
SML

[

ð
dB
db

dA52
F

d

�
db

dz

�21

. (13)

The net transport in the BBL is then given by the

difference:

E
BBL

5 E
net

2 E
SML

. (14)

Equation (13) reveals that our key Eq. (7), whenmultiplied

by the inverse stratification, is simply equivalent to Eq. (14),

the dianeutral flux identity between the BBL transport

[associated with changes in the area of the basin dA/dz;

LHS of Eq. (7)], the net transport [associated with dF/dz in

Eq. (7)], and the SML transport [associated with F/d in Eq.

(7)]. Note that these transports do not depend on the spe-

cific geometry chosen, only on F and db/dz. This is also true

for the amplification factor (McDougall and Ferrari 2017):

FIG. 4. Solutions for the trough and bowl geometries given constant net dianeutral upwelling Enet5 10 Sv and (top),(a)–(f) exponentially

increasing, (middle),(g)–(l) constant, and (bottom),(m)–(r) exponentially decreasing (a),(g),(m) stratification db/dz. The area-integrated

buoyancy flux F and (b),(h),(n) area of the SMLAmix, (c),(i),(o) the inverse slope of topography, (d),(j),(p) the trough with buoyancy flux,

(e),(k),(q) the bowl with buoyancy flux, and (f),(l),(r) the dianeutral transports. The inset panels in (d), (e), (j), (k), (p), and (q) represent

top-down views of the domain at 2000, 3000 and 4000m, with magenta indicating the area of the SML and black indicating weak mixing

within the domain. The gray lines in (d), (e), (j), (k), (p), and (q) are neutral density surfaces, and themagenta line indicates the height one

e-folding distance above the BBL.
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E
BBL

E
net

5 11
jE

SML
j

E
net

5 11
1

E
net
d

�
db

dz

�21ðb
bmin

E
net

db0,

(15)

where the last step [obtained by integrating Eq. (2) and

substituting into Eq. (13)] is the key diagnostic equation

of McDougall and Ferrari (2017), illustrating howA can

be obtained with knowledge only of Enet(b), db/dz, and
the buoyancy flux decay-scale d.

For constant net upwelling (i.e., Enet being in-

dependent of buoyancy) the three different stratifi-

cations considered above yield SML transports

[combining Eqs. (13) and (12)]:

E
SML

52
s

d
E
net
[12 e2(z1H2hBBL)/s], exponentialdb/dz ,

(16)

and

E
SML

52
1

d
E
net
(h

BBL
2 z2H), constant db/dz . (17)

For the most realistic case of exponentially increasing

stratification [Eq. (16) with s . 0], when more than one

or two e-folding depths above the basin bottom, there is

constant downwelling in the SML, constant upwelling in

the BBL, and a constant amplification factor (Figs. 4f

and 5f):

A5 11
s

d
. (18)

The limiting value of the amplification factor is determined

simply by the ratio of the vertical e-folding scales of

buoyancy s, and of the mixing intensity B, d. This simple

relationship is a consequence of the dependencies of Enet
and ESML on F, which is then eliminated in their ratio. In

our case s5 1500m and d5 500m, soA asymptotes to 4.

McDougall and Ferrari (2017) estimated an amplification

factor that increased from 1 at the bottom to 5 at 2500m

based on Eq. (15) and the large-scale net upwelling

structure Enet(b) estimated by Lumpkin and Speer (2007).

For constant stratification, ESML and A both in-

crease linearly with height (Figs. 4l and 5l). Under the

FIG. 5. As in Fig. 4, but for the (d),(j),(p) ridge and (e),(k),(q) seamount geometries. Note that above the crest of the topography

(horizontal dotted lines) it is not possible to have net upwelling and thus F, dr/dz, and the dianeutral transports are not shown there.
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exponentially decreasing stratification, ESML and A in-

crease exponentially with height (Figs. 4r and 5r). In this

case A can become very large, with transports in the

SML and BBL reaching over 150Sv above 2000m for

the same net upwelling of 10 Sv. This is because ESML

increases in proportion to F and must be large in weakly

stratified regions to balance the mixing-driven buoyancy

tendency [Eq. (13)].

d. A uniform buoyancy flux

One interesting limit to consider is d / ‘, where the

buoyancy flux per unit area is constant in the interior. Note

that this also captures thewater-mass transformationdriven

by a horizontally uniform geothermal heat flux at the sea-

floor. A geothermal flux drives a lightening of fluid only in

the BBL and thus produces the same dianeutral mass flux

as a uniform buoyancy flux, which decays only in the BBL

(Emile-Geay and Madec 2009; de Lavergne et al. 2017).

The area-integrated buoyancy flux F in this case is

simply equal to the total area of fluid outside the BBL

times B0 (Fig. 6), and the last term in Eq. (7), F/d, drops

out. This is fundamentally different from the bottom-

intensified case, where F/d dominated over dF/dz, as

there is now one additional height derivative between

the inverse slope dr/dz and F.

Consequently, it is no longer necessary that the slope

of the 2D trough be negatively curved in order to sup-

port upwelling (Figs. 6d,j,p). Instead we only require a

nonzero slope as this will always drive an increase in

total area (i.e., hypsometry; Rhines and MacCready

1989). This is also true for the bowl, with the additional

increase in the circumference accounting for the differ-

ences compared to the trough (Figs. 6e,k,q).

We also note that with a uniform buoyancy flux per unit

area, all of the upwelling is achieved in the BBL and there

is no dianeutral transport in the interior (Figs. 6f,l,r). We

do not consider the ridge or seamount cases for d / ‘
because the mixing is no longer localized close to the to-

pographic feature and remote effects become important.

e. Constant diffusivity

Finally, we can also consider the case of a constant

diffusivity k, following Munk (1966). With a constant

diffusivity and a stratification only dependent on height,

FIG. 6. As in Fig. 4, but for the limit that d / ‘, where the buoyancy flux per unit area is constant, B 5 B0, in the interior.
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the buoyancy flux per unit area in the interior is now a

function of height only, as opposed to height above

bottom. Thus, the area-integrated buoyancy flux F is

simply

F(z)5 k
db

dz
A(z) . (19)

Combining this with Eq. (6), we can obtain a simple

equation for the net dianeutral upwelling:

E
net

5k
dA

dz
1 kA

�
db

dz

�21
d

dz

�
db

dz

�
. (20)

The second term here is easily identified as ESML [sub-

stitute B 5 k(db/dz) in the integral of Eq. (13)]. Using

only the second term in Eq. (20), and dividing by A, we

obtain the one-dimensional balance equation,

E
net

A
5 k

�
db

dz

�21
d2b

dz2
, (21)

used byMunk (1966) to obtain the value kM5 1024m2 s21

consistent with a set of observed temperature, salinity,

and radiocarbon profiles from the abyssal Pacific.

However, this local interior balance excludes the first

term in Eq. (20) associated with the hypsometry of the

abyssal ocean and with flow in the BBL:

E
BBL

5 k
dA

dz
. (22)

This term may become large where basin areas

shrink rapidly with depth, as occurs below about

3000m in the main basins of the World Ocean (see

section 6).

As above, we can again solve for the topography. For

the most realistic case of exponentially increasing strati-

fication, combining Eq. (19) with Eqs. (A4) and (A5) for

F yields

A(z)5
sE

net

k
[12 e2(z1H2hBBL)/s] . (23)

The trough and bowl topographies are then obtained simply

through r(z)5 A(z)/Lc and r(z)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A(z)/p

p
, respectively.

For both the trough and bowl we see a continual increase in

the sidewall slope with height (Fig. 7). Sufficiently far above

the bottom the area of the basin approaches a constant, the

sidewalls become vertical, and the BBL transport vanishes

(green line in Fig. 7f). Given increasing stratification the

buoyancy flux per unit area due to a constant diffusivity is

everywhere increasing with height, and so upwelling can be

supported through the interior (ESML is positive; red line in

Fig. 7f) without a BBL transport. This is fundamentally

different from the bottom-intensified mixing case, hypsom-

etry playing a much weaker role here.

4. Lateral exchange between the boundary layers
and the interior

We now relax the assumption of vertically uniform

net dianeutral upwelling and instead specify the topog-

raphy and stratification, solving for the dianeutral

transport. In general, the resulting net dianeutral

transport will have convergences and divergences, which

in a steady state implies the existence of inflows and

outflows along neutral density surfaces to and from the

topographic feature of interest.Without an entraining or

detraining plume within the domain, such inflows and

outflows are not possible within the bowl and trough

geometries. Thus we consider only the ridge and sea-

mount and assume that there are far-field processes that

maintain a fixed stratification in the interior.

We examine a parabolic ridge or seamount defined by

h(y)5 z
0
2

y2

a2
, (24)

where z0 is the height of the crest and a measures the

width of the feature. We then obtain the area-integrated

buoyancy flux F by applying the exponential vertical

structure for the buoyancy flux per unit area [Eqs. (4)

and (5)] and integrating at constant height (see

appendix A).

There are clear differences in F between the ridge and

seamount below their crests (cf. dashed and solid lines in

Fig. 8c). For the ridge, F increases exponentially with

height approaching from below the flat crest where Amix

is large. This is unlike the ridges in the previous section,

whose crests were sharp (cf. Fig. 8b to Figs. 5d,j,p).

However, below the crest of the seamountF is constant as

the reduction in circumference with height exactly bal-

ances the effect of the reduction in slope (as the change in

area of a paraboloid with height is constant). The same

balance between the effects of circumference and slope

was noted byMcDougall andFerrari (2017) at the bottom

of a spherical bowl ocean. Above the crests of both the

ridge and the seamount F decays exponentially.

These forms for F have interesting implications for the

net dianeutral transport Enet (Figs. 8e,f). As discussed by

McDougall (1989), Enet is downward above both the ridge
and seamount and decreases with height. This implies

that both the seamount and ridge are lateral sinks of fluid

above their crests, as Enet diverges there (Fig. 8g).

In contrast, below the crest of the seamount Enet is
zero (black line in Fig. 8f), as F is constant. This implies

that there is a large lateral outflow into the interior right
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at the crest of the seamount, to balance the inflow above

the seamount. Notice that while there is no net dia-

neutral transport below the crest of the seamount, there

are strong exactly canceling flows within the BBL and

SML (green and red lines in Fig. 8f).

Below the crest of the ridge there is strong upwelling that

increases approaching the crest, as a consequence of the

peak in F at the crest. This implies that there are strong

lateral inflows below the crest of the ridge as well as above.

Mass conservation with a steady-state buoyancy field then

requires that the ridge crest be a strong lateral sourceoffluid

(Fig. 8g and orange arrows in Fig. 8b). Previously, it has

been suggested that fluid upwells diabatically up to the

crests ofmidocean ridges as a consequence of strongmixing

along their flanks, followed by lateral adiabatic flows con-

nected to the adiabatic upwelling in the Southern Ocean

(e.g., Ferrari 2014). However, this argument is not complete

since strong mixing can drive net downwelling just as easily

as it can drive net upwelling. Our calculations here show

that lateral adiabatic outflow at the level of ridge crests is

more likely a consequence of the large area of mixing

available at the crest of the ridge acting as a vertical attractor

for dianeutral transport. Note also that the crest outflow

occurs at the level where the ridge’s area is at a maximum;

this level is typically about 3000-mdepth for themain ridges

of the Pacific, Atlantic, and Indian Oceans (see section 5).

While the structure of Enet, and thus the lateral flows,

associated with a seamount or ridge can be complex, there

are someoverall constraints on this structure. For example,

the yellow control volume shown in Fig. 8b, whose top

edge lies well above the crest where B is weak, must lose

buoyancy as a result of the diffusive buoyancy flux at its

bottom edge. This diffusive buoyancy loss must be bal-

anced by a net advective buoyancy flux into the domain

associated with both the lateral flows and any nonzero Enet
at the bottom edge of the control volume. This means that

the average density of seawater entering the control vol-

ume via these flows must be less than the average density

of water exiting the domain. In other words, on average the

inflows must be more buoyant and lie above the outflows,

with downwelling required to connect these flows.

Here and in section 3 we have examined how the di-

aneutral upwelling and the topography, respectively, are

determined by the other parameters. A third possibility

(considered in appendix B and Fig. B1) is how the

stratification is determined from specified topography

FIG. 8. The dianeutral circulation for a (e) ridge and (f) seamount with a (a),(b) parabolic topography h(y) 5 z0 2 (y2/a2) and

(d) exponentially increasing stratification. (c) The area-integrated buoyancy flux F obtained by integrating the buoyancy flux shown in

(b) at constant height. (g) The vertical divergence of the net dianeutral transport, or the lateral inflow toward the ridge/seamount from the

interior. These lateral flows are also indicated schematically in (b) by the orange arrows, where the inflow below the crest (dashed arrows)

is only present for the ridge. The yellow box indicates a control volume over which theremust be net diffusive buoyancy loss due to the loss

of buoyancy through its bottom edge, which is balanced by an advective buoyancy flux into the control volume.

FIG. 7. As in Fig. 4, but for a constant interior diffusivity k and exponentially increasing stratification.
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and dianeutral upwelling profiles. We find that in many

cases these solutions predict vanishing stratification, il-

lustrating how nontrivial it is for the interior ocean to

obtain a smooth, height-increasing stratification under

the constraints of topography and a bottom-intensified

buoyancy flux. In reality the stratification itself will in-

fluence the mixing. In particular, the unstratified solu-

tions presented in appendix B cannot support a nonzero

buoyancy flux as the mixing efficiency will reduce to

zero. Introducing a stratification-dependent mixing ef-

ficiency would presumably result in solutions with weak

stratification rather than vanishing stratification in these

regions. However, such calculations are outside the

scope of this article and will be left to future work.

5. Two-dimensional examples: The Mid-Atlantic
Ridge and the South Pacific

In this section we examine how the ideas developed

above apply to two more realistic topographies, namely,

two-dimensional segments of the Mid-Atlantic Ridge

and the South Pacific. We apply the same approach as in

the previous section to derive the dianeutral transports,

but this time from realistic topography and stratification.

Our aim here is not to examine in detail the water-mass

transformation associated with specific basins but in-

stead to gain a qualitative understanding of the influence

of their geometry on the dianeutral circulation. We use

the 1/308ETOPO2v2 dataset (Smith and Sandwell 1997)

regridded at 1/28.

a. The Mid-Atlantic Ridge

We first consider the relatively two-dimensional South

Atlantic Ridge between 188 and 58S (magenta region in

Fig. 9). We calculate an average zonal cross section

by averaging together ridge-centered zonal profiles of

topography at each latitude in this range (Fig. 10a). At

each zonal location we then apply a bottom-intensified

vertical profile for the buoyancy flux per unit area [Eqs. (4)

and (5)] to obtain a two-dimensional buoyancy flux struc-

ture similar to the idealized 2D examples discussed earlier

(color in Fig. 10a). We then integrate this buoyancy flux at

constant height over a number of different sectors of the

basin (red, black, green and blue sectors in Fig. 10a) to

obtain the area-integrated buoyancy flux Fz(z) in each

sector (corresponding colored lines in Fig. 10b). Once

again, in order to focus only on the role of seafloor ge-

ometry we have assumed that the maximummagnitude of

the buoyancy flux B0 is horizontally uniform.

If buoyancy were only a function of height, the sign of

dFz/dz determines whether the net dianeutral transport is

upward (dFz/dz . 0) or downward (dFz/dz , 0). Of

course in reality the buoyancy and stratification vary hor-

izontally. In section 5a(2) we examine how our conclusions

are altered when taking into account the observed lateral

variations of neutral density g in these regions by in-

tegrating the buoyancy flux along surfaces of constant

g [yielding Fg(g)]. However, it is informative to first con-

sider integration of the buoyancy flux at constant height,

equivalent to assuming that neutral density depends only

on height, in order to isolate the role of seafloor geometry

from the geometry of neutral density surfaces. The su-

perscript z or g on F is used to distinguish between these

two cases.

We also note that the relationship between F and the

sign of Enet holds in each sector of the basin individually,

as Eq. (2) applies to local as well as global regions (as

emphasized by McDougall and Ferrari 2017).

1) AREA INTEGRATION AT CONSTANT HEIGHT

On both sides of the SouthAtlanticFz increases rapidly

with height from zero at the bottom (;5400m), driving

FIG. 9. Global ocean topography at 1/28 resolution from the 1/308ETOPO2v2 dataset (Smith

and Sandwell 1997). The 4000-m contour is plotted in black. The magenta and red areas show

the MAR and SP regions considered in Fig. 10. The horizontal black lines show the latitude

bounds used in Figs. 11 and 12.
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upwelling there (Fig. 10c). On the continental slopes, Fz

then decreases above 5000m associated with a continuous

steepening of the continental slopes (red and blue lines in

Fig. 10b). This indicates that, without variations in the peak

mixing intensity B0, continental slopes tend to be sites of

net downwelling rather than upwelling. This statement

also holds for the western side of the Mid-Atlantic Ridge

(black lines in Figs. 10b,c), although the vertical variation

in the slope is weaker here and thus we would expect

weaker net dianeutral transport.However, the eastern side

of the ridge has a section where the slope decreases with

height extending the near-bottom upwelling up to 4000m,

with downwelling above (green lines in Figs. 10b,c). Of

course, variations in B0 with height, if strong enough, can

override these geometric effects.

The ridge crest is also an interesting feature. Because

it is relatively flat, there must be an increase inAmix, and

thus Fz, approaching the crest (black and green lines in

Fig. 10b near 3000m). As discussed in section 4, this

drives upwelling below the crest, which when combined

with the downwelling that must occur above the crest,

results in a vertical convergence of flow at the crest

(Fig. 10c, near 3000m). Thus, the ridge crest is a lateral

source of fluid that must be removed by the adiabatic

arm of the overturning circulation. Note that if mixing

were enhanced at the crest, as suggested by some studies

(St. Laurent and Thurnherr 2007; Lefauve et al. 2015),

then this effect would be further enhanced.

2) AREA INTEGRATION ALONG NEUTRAL

DENSITY SURFACES

We now perform a similar analysis, this time taking

into account the lateral variations in neutral density g

by integrating the buoyancy flux along neutral density

surfaces (gray lines in Fig. 10a), as calculated from

the WOCE climatology (Gouretski and Koltermann

2004) using the method of Jackett and McDougall

(1997). The neutral density surfaces slope downward as

they intersect topography, a consequence of the no-flux

boundary condition (Thompson and Johnson 1996;

Garrett 2001). The vertical gradients in Fg are com-

pressed into narrow neutral density ranges, particularly

in the deep eastern basin where the stratification is very

weak (green and blue lines in Fig. 10d). There is large

inferred upwelling in the densest waters in both basins

where Fg increases rapidly (Fig. 10e). Of course, up-

welling in the eastern basin is likely to be reduced if a

mixing efficiency dependence on db/dz was introduced

FIG. 10. Cross section of averaged topography across the (a) Mid-Atlantic Ridge between 188 and 58S (magenta region in Fig. 9) and

(f) the South Pacific between 358 and 208S (red region in Fig. 9). In color is shown the assumed bottom-intensified buoyancy flux per unit

area with scale height d5 500m. In gray are contours of neutral density. The Atlantic cross section is split into four sectors corresponding

to the Brazilian coast (red), the western ridge (black), the eastern ridge (green), and the African coast (blue). The South Pacific cross

section is split into three sectors. (b),(g) The area-integrated buoyancy flux Fz(z) at constant depth for the different sectors. (c),(h) The

vertical derivative of Fz(z). (d),(i) The area-integrated buoyancy flux F g(g) along neutral density surfaces. (e),(j) The net dianeutral mass

flux Enet 5 dFg/db.

APRIL 2018 HOLMES ET AL . 873



(de Lavergne et al. 2016a; Mashayek et al. 2017). The

convergence of Enet at the ridge crest is also evident

(green and black lines near 28.075kgm23 in Fig. 10e).

Therefore we find that in terms of the sign of net dia-

neutral transport, there are only minor differences be-

tween integration along depth and neutral density

surfaces within each coherent sector, implying that the

departure of neutral density surfaces from the horizon-

tal does not dramatically alter the conclusions reached

in the previous section (cf. Figs. 10b and 10d).

The strong increase in F within the deepest part of the

basins suggests that the dF/dz term in Eq. (7) dominates

over F/d in this region. This contrasts with the simple

geometrical configurations considered in section 3, where

the assumption of constant Enet, and a smooth db/dz,

drove F to increase slowly with height. The smallness of

F/d compared with dF/dz means that the dianeutral

transport in the interior ESML is small and that the net

transport Enet is mostly associated with the transport in the

BBL. This dominance of dF/dz over F/d also suggests that

the constant buoyancy flux per unit area regime discussed in

section 3d applies reasonably well in these bottom-most re-

gions (since there is a finite buoyancy flux throughout depths

within d of the basin bottom such that bottom-intensified

and constant buoyancy flux regimes are similar), where

much of the dianeutral upwelling may occur. The results of

de Lavergne et al. (2017) also support this conclusion, with

their constant buoyancy flux scenario reproducing the peak

in global dianeutral upwelling at 28.11kgm23 predicted by

the inverse calculation of Ganachaud and Wunsch (2000)

and implied by the Pacific radiocarbon distribution.

b. The South Pacific

The Pacific is generally more topographically complex

than the Atlantic. As an example, we consider a rela-

tively two-dimensional zonal segment in the South Pa-

cific between 358 and 208S, centered on the East Pacific

Rise (red region in Fig. 9). The topography along this

segment has gentler slopes than the Atlantic segment,

apart from the steep western side of the Tonga–

Kermadec trench (cf. Figs. 10f and 10a, where the hor-

izontal scale is 2.5 times larger in Fig. 10f). These gentle

slopes and the larger zonal extent in comparison to the

Atlantic segment result in a much larger area-integrated

buoyancy flux F (cf. Figs. 10g,i with Figs. 10b,d, re-

spectively; the meridional extent of the two regions is

similar). Nevertheless, many of the qualitative features

characterizing the Atlantic segment are also true here.

There is large buoyancy gain and upwelling in the

deepest, densest waters. The convergence of dF/dz at

the crest of the East Pacific Rise (green and blue lines

near 3000m in Fig. 10h) is also evident, but less prom-

inent than for the Mid-Atlantic Ridge.

6. Is the ocean two-dimensional or three-
dimensional?

Given the discussion in the earlier sections of this article,

the question arises as to whether the ocean, on average,

can be thought of as two-dimensional or three-dimensional

and axis-symmetric. Previous authors have considered the

global ocean in an idealized sense as a 3D bowl (Rhines

and MacCready 1989; McDougall and Ferrari 2017) or

2D trough (Ferrari et al. 2016). In this section we ask

whether these idealizations are appropriate. In the process,

we examine what controls vertical variations in the incrop

area of density layers, known to be crucial to the abyssal

dianeutral circulation (de Lavergne et al. 2016b, 2017).

We first continue to assume that neutral density varies

only with height to focus on the influence of seafloor

geometry on variations in the incrop area independently

of the neutral density surface geometry and the clima-

tology or climate associated with a given neutral density

distribution (section 6a). Later (section 6b), we return to

buoyancy space using the WOCE climatology and show

that, as in the specific examples in the previous section,

the results are not qualitatively different.

a. The incrop area of depth layers

Assuming that buoyancy varies onlywith height and that

mixing is bottom intensifiedwith uniform peakmagnitude,

the incrop area of depth layers into the topography dA/dz

controls the area-integrated buoyancy flux F and thus the

sign of the net dianeutral transport Enet. As discussed in

section 2, when the topography and F change slowly in the

vertical (with respect to d) F/d dominates dF/dz in Eq. (7).

Combining Eqs. (7), (9), and (6) in this limit,

E
net
(z)’B

0
d

�
db

dz

�21
d

dz

�
dA

dz

�
. (25)

That is, the sign of Enet is controlled by the vertical de-

rivative of the incrop area dA/dz. Net dianeutral up-

welling occurs when the incrop area increases with

height [d/dz(dA/dz) . 0], and net dianeutral down-

welling occurs when the incrop area decreases with

height [d/dz(dA/dz), 0]. Below, we assess whether it is

changes in the slope or the perimeter of bathymetric

contours with height that plays the dominant role in

driving these vertical variations in dA/dz.

It is also worth noting that if the buoyancy flux per unit

area were constant in the interior instead of bottom in-

tensified (as considered in section 3d), then dF/dz

dominates F/d in Eq. (7), and Eq. (25) is replaced by

E
net
(z)’B

0

�
db

dz

�21
dA

dz
. (26)
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In this case the incrop area directly controls the sign of

Enet, rather than its vertical derivative.

We consider the global topography between 308S and

488N. We calculate both the total ocean area A(z) and

the global length of the bathymetric contour, or the

perimeter L(z), at each height. Given L(z) and A(z) we

can derive an effective inverse slope dr/dz by rearrang-

ing Eq. (9):

dr

dz
5

1

L(z)

dA

dz
. (27)

This quantifies the contribution of changes in the aver-

age sidewall slope to changes in area with height.

An effective radial profile can then be obtained by

integration:

r(z)5

ðz
z0

dr

dz
dz , (28)

where we use z0526500m. Note that the calculation of

the length of a bathymetric contour is resolution de-

pendent. The relevant length scale is the width of the

SML, which depends on the topographic slope. To suf-

ficiently capture the steep continental slopes, we

choose a 1/28 bathymetric grid, which for a decay scale of

d5 500m corresponds to a slope of;1/100 (appropriate

for the African continental slope in Fig. 10a). While the

magnitude of the perimeter and effective inverse slope

do change with resolution, their qualitative form does

not, and the conclusions below are not altered.

There is a distinct peak in the incrop area between

4000 and 5500m (Fig. 11b). There are strong variations

in both perimeter and slope that contribute to dA/dz

(black lines in Figs. 11a,c). The perimeter increases up to

4200m (i.e., bowl-like behavior) and then decreases

above (i.e., seamount-like behavior) due to the disap-

pearance of ridges and seamounts. However, the height

of maximum perimeter and maximum dA/dz are offset

from each other, owing to the influence of the slope.

Over the majority of the depth range the effective slope

is increasing (Fig. 11c).

For bottom-intensified mixing the sign of the vertical

derivative in the incrop area d2A/dz2 determines the sign

of Enet if neutral density varies only with height [Eq.

(25)]. We can split d2A/dz2 into two terms:

d2A

dz2
5

dL

dz

dr

dz
1L

d

dz

�
dr

dz

�
, (29)

associated with changes in the perimeter and slope, re-

spectively. This decomposition shows that the increase

in incrop area with height below 4500m is entirely

driven by the increase in the perimeter of bathymetric

contours (cf. black dashed and solid lines in Fig. 11e). In

contrast, the reduction in incrop area between 4400 and

2000m is largely driven by the continuous increase in

the effective slope (cf. black dotted and solid lines in

Fig. 11e) transitioning from the flat abyssal plains to the

steep continental slopes (e.g., Fig. 10a). Hence, vertical

variations in the perimeter and slope promote upwelling

below 4500m and downwelling above, respectively (re-

membering, of course, that the connection to upwelling

and downwelling relies on the assumption of a constant

B0). If on the other hand the buoyancy flux per unit area

was constant in the interior [Eq. (26)], then the down-

welling above 4500m would be replaced by weakening

upwelling (de Lavergne et al. 2017), driven again by the

increase in the slope.

For comparison purposes, we also estimate the pe-

rimeter and slope for 2D (i.e., a constant perimeter; red

lines in Fig. 11) and 3D axis-symmetric [i.e., the perim-

eterL5 2pr, where r is the effective radial profile in Eq.

(28); green lines in Fig. 11] oceans with the same incrop

area. These 2D and 3D oceans are fundamentally dif-

ferent from the real ocean. For the 2D ocean, changes in

incrop area are entirely driven by changes in the slope.

Consequently, the slope must be comparatively steep

below 5500m, gentle between 5500 and 3000m, and

steeper above, relative to the real ocean with a variable

perimeter (cf. red and black lines in Figs. 11c,d). This is

similar to the differences near the bottom of the domain

between the trough and bowl shown in section 3 (e.g., cf.

Fig. 4d and Fig. 4e). The 3D axis-symmetric ocean also

shows some drastic departures from reality: the 3D

ocean perimeter must always increase with height.

While this may be accurate in the abyssal ocean below

4000m, it is not realistic elsewhere. Also, since an axis-

symmetric system is the one with minimum perimeter

for a given area, both the perimeter and consequently

the slope are much smaller than the other two cases

(note the order-of-magnitude difference between the

green and black lines in Figs. 11c,d).

Note that the qualitative results discussed above are

not sensitive to the basin considered. While there are

some quantitative differences, the overall properties

linked to the geometry the abyssal plains, ridges, and

continental slopes are consistent across the three main

ocean basins.

b. The incrop area of neutral density layers

We now extend the results of the previous section to

the general case of curved neutral density surfaces. As

discussed by de Lavergne et al. (2016b), the incrop area

of neutral density layers 2dA/dg exerts a strong con-

straint on the net dianeutral transport. When mixing is
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bottom intensified, layers with a larger incrop area are

exposed to larger buoyancy fluxes. Therefore these

layers host a larger area-integrated buoyancy flux F,

which controls Enet through Eq. (2). Here, we perform a

similar decomposition as in the previous section [e.g.,

Eqs. (25), (27), and (29), with d/dz replaced by 2d/dg

except in db/dz] where the perimeter L is now replaced

by the length of the outer edge of a given neutral density

surface where it comes into contact with the seafloor.

The effective inverse slope2dr/dg is now interpreted as

the average inverse slope of the topography in density

space, which includes both the effects of a sloping sea-

floor and the geometry of neutral density surfaces.

The incrop area of density layers is confined to a

narrow range of neutral densities between 28 and

28.2kgm23 (Fig. 12b). This is a result of the large volume

of weakly stratified waters with neutral density near

28.11kgm23 that cover much of the abyssal plains (de

Lavergne et al. 2016b). The decomposition of the incrop

area into the perimeter (black line in Fig. 12a) and ef-

fective inverse slope (black line in Fig. 12c) in density

space is nevertheless qualitatively similar to that in depth

space. The increase in incrop area below 28.11kgm23 is

driven by a rapid increase in the perimeter of neutral-

density surfaces (cf. dashed and solid black lines in

Fig. 12e), while the decrease above 28.11kgm23 is driven

by a rapid decrease in the effective slope of topography in

density space (cf. dotted and solid black lines in Fig. 12e).

To recap, we find that the real ocean does not map onto

any single purely 2D or 3D axis-symmetric geometry.

However, in certain depth or density ranges these idealized

geometries do describe the real ocean reasonably well.

Below the incrop area peak near 4000m, the increasing

perimeter plays an important role suggesting that the

ocean acts like a 3D bowl, albeit with a much larger cir-

cumference relative to its area. Above 4000m changes in

the perimeter are much weaker, and the main geometrical

feature is the increase in the average slope, suggesting that

the 2D trough idealization is more appropriate.

7. Summary and discussion

We have examined the relationship between the ge-

ometry of the seafloor and the abyssal dianeutral cir-

culation when buoyancy fluxes per unit area are bottom

intensified and of uniform bottom magnitude. Conclu-

sions can be summarized as follows:

1) Under an assumption of vertically uniform net

dianeutral upwelling, subtle differences in the slope

and circumference of the seafloor can result in

FIG. 11. Properties of the seafloor topography between 308S and 488N using 1/28 resolution topography. (a) Perimeter L(z), (b) incrop

area of depth layers, (c) the effective inverse slope dr/dz [Eq. (27)], (d) the radial profile obtained from dr/dz, and (e) the vertical trend in

incrop area (solid black) and the contributions of variations in perimeter (dashed black) and inverse slope (dotted black) to that trend. In

red is the 2D case where the perimeter is constant and equal to the average of the real perimeter. In green is the 3D axis-symmetric case

characterized byL5 2pr [this case is also shown with faint lines in (e)]. Note the order of magnitude difference between the 3D case and

the others in (c) and (d).
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stratification that is bottom intensified, uniform, or

surface intensified (Fig. 4).

The sensitivity of the interior stratification to the

seafloor geometry raises the following question:Why

does the abyssal stratification increase relatively

smoothly in the vertical? The answer likely involves a

coupling between the topographic effects discussed

here, the vertical structure of the lateral flows to and

from the Southern Ocean (and the North Atlantic),

and spatial variations in mixing intensity.

2) Variations in topography can drive lateral, adia-

batic flows away from and toward topographic

features. The crests of midocean ridges may be

particularly strong sources of lateral flow because

the area of active mixing is highest near the ridge

crest, driving a convergence of the net dianeutral

transport there.

3) Geometric considerations suggest that much of the

diabatic upwelling may occur near the bottom of the

ocean basins (e.g., South Atlantic and South Pacific

segments in Fig. 10). The densest waters residing at

the bottom of these basins are best placed to be con-

sumed by the bottom-intensified turbulence, owing to

the large seafloor area and the large area-integrated

buoyancy flux that converges there. This suggests that

AABW consumption is essentially a sequential and

lateral (rather than vertical) phenomenon, with the

density of peak consumption moving to progressively

lighter densities as AABW moves northward away

from the Southern Ocean and becomes more homo-

geneous (de Lavergne et al. 2016b, 2017).

4) Finally, changes in the perimeter of global neutral-

density surfaces dominate the increase with height

of the incrop area of neutral density layers below

4500m (Figs. 11 and 12). As the vertical derivative of

this incrop area is a key determinant of the net dia-

neutral transport owing to the bottom-enhanced

turbulence, much of the net dianeutral upwelling

below 4500m may be associated with this increase in

perimeter. In contrast, the effective slope of the

seafloor increases with height throughout the deep

ocean, associated with the transition from flat abyssal

plains to steep continental slopes, driving a decrease

in the incrop area above 4500m. This implies that the

geometry in this depth range is prone to net dianeu-

tral downwelling. If net upwelling is to be achieved

here then it must be through a height increase of the

mean intensity of boundary mixing as measured by

B0, or by a buoyancy flux per unit area that does not

decay above the bottom, or by geothermal heating. It

is worth noting that if the diffusivity at the top of the

BBL were constant then the increasing stratification

with height will result in an increasing B0 with height

that is favorable for net upwelling.

The main drawbacks of the approach taken in this

article are the assumptions of horizontally homoge-

neous stratification, a constant mixing efficiency G, and
no lateral variations in the peak buoyancy flux B0. In

FIG. 12. As in Fig. 11, but for neutral density space calculated using the WOCE climatology.
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particular, variations in B0 may be expected to have a

large impact.We have also ignored themultiple effects of

the nonlinear nature of the equation of state of seawater

(Klocker and McDougall 2010). These assumptions al-

lowed us to obtain simple solutions and isolate the role of

topography. Future work will attempt to address these

drawbacks, in particular to allow for feedbacks between

the stratification and the buoyancy flux. Additionally, we

have not considered the role of mixing processes along

neutral density surfaces, such as mesoscale eddies. These

may play an important role by altering the geometry of

neutral density surfaces and the structure of the boundary

layer (e.g., Broadbridge et al. 2016).
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APPENDIX A

Mathematical Details

a. Derivation of Eq. (7)

Equation (6) can be solved for the topography h(y) by

combining Eqs. (3) and (5):

F(z)5B
0

ðr(z)
y0

L(y) exp

�
2
z2 h(y)2h

BBL

d

�
dy . (A1)

The integral in Eq. (A1) begins at y05 0, where F5 0 and

the depth is h(y0) 5 2H (see Fig. A1). Equation (A1)

applies to both 2D and 3D geometries. We have ignored

the contribution of the buoyancy flux within the BBL to F,

as this is small [because the layer is well-mixed, neutral-

density surfaces are approximately perpendicular to the

topography so that the buoyancy gradient along the to-

pography is small and thus the area is also small; also see

Kunze et al. (2012) and McDougall and Ferrari (2017)].

The function y5 r(z) is the inverse function of z5 h(y)1
hBBL (Fig. A1). To obtain a solution we require that h(y)

is a monotonic function of y [so that r(z) exists]. Equation

(A1) can be solved for the inverse slope of the topography

dr/dz through a derivativewith respect to z and application

of the Leibniz rule, yielding Eq. (7).

b. The area of the SMLAmix

The area of the SML Amix (McDougall and Ferrari 2017)

can be defined as the horizontal area between the top of the

BBLand the contour a distance d above theBBL (Fig.A1):

A
mix

(z)[

ðr(z)
r(z2d)

L(y) dy . (A2)

In the case where both L and dr/dz change slowly in the

vertical with respect to d [i.e., the slope curvature

d/dz(dr/dz)21 � (1/d)(dr/dz)21], this reduces to

A
mix

’L[r(z)2 r(z2d)]’Ld
dr

dz
5 d

dA

dz
. (A3)

c. The trough, bowl, ridge, and seamount slopes for
uniform dianeutral upwelling

Herewe derive the forms for the topographic slopes of

the bowl, trough, ridge, and seamount geometries used

in section 3. Using Eq. (12) in Eq. (8) with a constant Enet
yields the following:

F5 sE
net
N2

0 [e
(z1H2hBBL)/s21], exponentialdb/dz , (A4)

and

F5 E
net
N2

0(z1H2h
BBL

), constant db/dz . (A5)

Using Eqs. (A4) and (A5) in Eq. (7) yields the following:

L
dr

dz
5

E
net
N2

0

B
0

h
e(z1H2hBBL)/s

�
11

s

d

�
2

s

d

i
,

exponential db/dz, (A6)

and

L
dr

dz
5

E
net
N2

0

B
0

�
11

z1H2 h
BBL

d

�
,

constantdb/dz . (A7)

To obtain the topography r(z), we then integrate with

respect to z [for the circular geometries where L 5 2pr,

this involves first using the identityL(dr/dz)5 d/dz(pr2)].

FIG. A1. The coordinates used to solve for the topography in the simple

2Dandcircular geometries.Theh(y) is the (negative) height of topography

and r(z) is the distance from y0 to the top of the BBL. Also shown is the

width of the SML Amix(z); the distance between the top of the BBL and

the point at which the buoyancy flux has decreased by a factor of 1/e.
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Equations (A6) and (A7) were obtained by assuming that

r(z) increases with height from zero at z0 5 H 2 hBBL
upward (appropriate for the trough and bowl geome-

tries where dr/dz . 0). However, we can also multiply

the RHS of Eqs. (A6) and (A7) by 21 and integrate

downward from a shallower starting height z0 to obtain

a solutionwhere r(z) decreases with height (appropriate for

the ridge and seamount geometries, where dr/dz, 0).

d. The area-integrated buoyancy flux for the
parabolic ridge and seamount

The slope of the parabolic ridge and seamount

corresponding to Eq. (24) considered in section 4 is

given by

dr

dz
52

a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
0
1h

BBL
2 z

p . (A8)

Given this slope, the area-integrated buoyancy flux

around the ridge [using Eq. (A1)] is

F
ridge

5 2L
c
B
0

ð‘
r(z)

exp

�
2
z2 h(y)2 h

BBL

d

�
dy ,

5aL
c
B
0

ffiffiffiffiffiffi
pd

p
e(z01hBBL2z)/d

"
12 erf

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
0
1h

BBL
2 z

d

r !#
,

z, z
0
, and (A9)

5aL
c
B
0

ffiffiffiffiffiffi
pd

p
e(z01hBBL2z)/d, z. z

0
, (A10)

and around the seamount is given by

F
seamount

52pB
0

ð‘
r(z)

y exp

�
2
z2h(y)2h

BBL

d

�
dy ,

5B
0
pa2d, z, z

0
, (A11)

5B
0
pa2de(z01hBBL2z)/d, z. z

0
. (A12)

These relations are illustrated in Fig. 8, for the case of

exponentially increasing stratification with height.

FIG. B1. The stratification (d),(h) obtained for a parabolic slope [h(y) 5 z0 6 (y2/a2)] with uniform net dianeutral upwelling for

(a)–(d) the trough and bowl and (e)–(h) the ridge and seamount. In (b) and (f) neutral density contours for the 2D (solid contours)

and 3D (dashed contours) geometries are shown in gray.
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APPENDIX B

Steady-State Stratification Given a Constant Supply
of Bottom Water

In this appendix we consider how the stratification is

determined by the other parameters: the topography

and net dianeutral transport. Without a supply of bot-

tom water, there is no stratified steady-state solution, as

the densest waters will be progressively consumed by

mixing. Thus we will consider again the case of uniform

net dianeutral upwelling forced by a source of bottom

water at the base of the domain. As in section 4, we

consider parabolic geometries. The situation considered

here is relevant for example for a laboratory or nu-

merical experiment where the topography, buoyancy

flux, and inflow of bottom fluid are specified and the

stratification must adjust.

The steady-state stratifications are quite different

across the four cases of parabolic ridge, seamount

(Fig. B1f), trough, and bowl (Fig. B1b) topographies.

For the parabolic seamount, as noted in section 4, F is

uniform below the crest and decreases above (dashed

line in Fig. B1g). Thus there are no regions where F

increases with height and the seamount cannot support

upwelling through a positive stratification, forcing an

unstratified solution. For the ridge topography, F in-

creases with height below the ridge crest and so net di-

aneutral upwelling through a stable stratification can be

supported there. The stratification must increase very

rapidly toward the ridge crest in order to constrain up-

welling to 10Sv given the rapid increase in F (solid line

in Fig. B1h). Note again that since F always decreases

above the crest of the ridge or seamount, net upwelling

through a stable stratification cannot be supported there

and the fluid is unstratified.

For the bowl geometry, F increases from the bottom

of the bowl upward, approaching a constant value well

above the bottom (dashed line in Fig. B1c). Thus uni-

form upwelling can be supported provided that db/dz

decays toward zero with height (dashed line in Fig. B1d).

Finally, stratification can only be supported close to the

bottom of the trough (solid line in Fig. B1d) where F

increases (rapidly).

These results change if the buoyancy flux per unit area

is assumed to be constant, with d / ‘ (not shown). In

this case, both the trough and bowl can support nonzero

stratification throughout the entire depth range, as the

total area of fluid always increases with height. In fact,

the parabolic bowl with constant upwelling supports a

uniform stratification (identical to the second row of

Fig. 6), since the total area of the paraboloid increases

linearly. The trough stratification is strongly peaked at

the bottom of the basin, as for the bottom-intensified

case, but decays exponentially more slowly in the ver-

tical, approaching but never reaching zero.
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