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Abstract

Single chain block copolymers in poor solvents with asymmetric A and B species block

lengths form an interesting and potentially useful set of conformations not yet fully investi-

gated by the literature. Self consistent field theory simulations performed in this work predict

that the chains collapse to form a sphere of the species with longer blocks surrounded by var-

ious surface domains of the species with shorter blocks. A simple free energy scaling model

describes this formation and provides an alternative prediction of the number of such surface

domains formed for a large range of polymer parameters. The model and simulation predic-

tions of the number of surface domains agree well for the majority of cases, and best for highly

asymmetric polymer chains. The authors believe that these highly asymmetric polymer chains

are candidates for building patchy colloid like particles, as they form balls with a controllable

number of surface patches.

∗To whom correspondence should be addressed
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Introduction

Block copolymers have received much attention due to their tendency to self-assemble into intri-

cately structured nanoscale particles and networks. The chemically distinct blocks forming the

polymer chain repel each other out of energetic considerations but cannot entirely separate due to

chain connectivity, resulting in microphase separation. An enormous variety of interesting con-

formations and structures form depending on polymer architecture, interaction strengths, solvent

conditions and other parameters. The understanding of these conformations and the reasons for

their formation is vital to a range of applications from protein folding1 and drug delivery,2 to

materials science and nanoscience.3

Most block copolymer studies focus on high density polymer solutions without an explicit

solvent due to their applications in materials science. For these copolymer melts, the agreement

between theory and experiment is now quite good and their conformations can be predicted ac-

curately.4 This is not true for some classes of single copolymer chains in dilute solutions. There

exist many studies on so-called H-P copolymers in dilute solutions, consisting of a mix of hy-

drophobic (H) monomers and hydrophillic polar (P) monomers. H-P copolymer globules are

characterized by the formation of a densely packed H core surrounded by a P fringe layer, due to

the solvent selectivity. These polymers are of interest due to their similarity to proteins and their

properties, such as the coil-globule transition, have been studied extensively.5–7 This paper fo-

cuses on copolymers where the solvent is non-selectively poor for both species and therefore each

individual chain collapses to form its own densely packed and intricately structured globule, with

sharp interfaces between components. Apart from the homopolymer case,8 a full understanding of

the conformations formed by these single chain copolymers in nonselective poor solvents has not

yet been reached. Studies done using monte carlo and self consistent field theory simulations have

shown the range of interesting and potentially useful conformations that flexible single chain block

copolymers in nonselective poor solvents can form.9,10 These studies focused on copolymers with

symmetric block lengths of two monomer species. This paper aims to investigate the asymmetric

case, where the length of the blocks of the two species are different.
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We focus our attention on fully flexible single chain asymmetric block copolymers with re-

peating blocks of A and B species monomers where the A blocks contain less monomers than

the B blocks. We consider only nonselective poor solvents, meaning the chains collapse into a

compact globule with no preference between A and B species to solvent contact. We will show

that this class of polymer may have the potential to be used as patchy colloid like particles11–13 in

nanoscience applications due to the conformation into which they collapse.

We use a self consistent field theory (SCFT) simulation method to obtain predictions of the

collapsed polymer conformations. SCFT is significantly faster than other methods such as monte

carlo, allowing a much broader and more thorough investigation of the parameter space. SCFT has

been used extensively for the study of polymer melts.14,15

The SCFT simulations predict that the chains collapse to form a sphere of the species with

longer blocks surrounded by various surface domains of the species with shorter blocks (see Fig-

ure 1). Based on this result, we construct a free energy scaling model of the polymer system using

simple surface tension and stretching free energy terms. This model gives a simple theoretical

prediction of the conformation formed given the various polymer parameters and solvent strength.

Specifically, using this model we are able to accurately predict the number of surface A domains

formed for highly asymmetric single block copolymer chains in poor solvents. This conformation

of a spherical globule with a predictable and hence controllable number of surface patches would

be ideal for use as a patchy colloid like particle.16

We first describe the theoretical basis and numerical implementation of the self consistent field

theory simulation method for single polymer chains. The free energy scaling model is described

and analyzed in the following section. The results and analysis section presents the main results of

the simulations and compares them to the free energy model. Finally we conclude and summarize

the outcomes of this research and suggest further work to be done.
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Figure 1: Polymer conformations produced using SCFT for various polymer chain parameters.17

The polymer chains have N total monomers, n blocks and block size ratio R = NA
NB

where NA and NB
are the number of species A and B monomers. The flory interaction parameters polymer-solvent
and polymer-polymer are χ and χAB respectively. For the above conformations: (a): N = 6000,
n = 16, R = 0.55, χ = 0.65, χAB = 0.25. (b): N = 8192, n = 16, R = 0.45, χ = 0.65, χAB = 0.25.
(c): N = 9284, n = 22, R = 0.25, χ = 0.7, χAB = 0.2. (d): N = 5520, n = 12, R = 0.3, χ = 0.7,
χAB = 0.3.
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SCFT Simulation Method

Theoretical basis

Self consistent field theory is based on a density field model of the polymer.4 The polymer is

described by density fields on a lattice that are iteratively updated using a propagator function q that

reproduces the boltzmann distribution in the arrangement of the polymer chain. This propagator

function returns the connected polymeric nature to the density fields.

We consider a polymer chain with N monomers and monomer size (Kuhn length) b. The chain

consists of n alternating blocks of species A and species B monomers. The block size ratio R de-

termines the degree of asymmetry in the polymer chain, with R = NA
NB

where NA is the total number

of A monomers and NB the total number of B monomers. Dividing the chain into Ts steps (for

computation Ts is usually not equal to N), the partition function from the beginning of the chain

given that the chain begins at rrr0 is denoted Q(rrr,rrr0,s). We are placing no restrictions on the begin-

ning and ending positions of the chain, and so we work with the partition function integrated over

all starting positions, the forward propagator q(rrr,s) =
∫

V Q(rrr,rrr0,s)drrr0. The forward propagator

obeys a modified diffusion equation:18,19

∂

∂ s
q(rrr,s) =

b2

6
∇

2q(rrr,s)−w(rrr,s)q(rrr,s) (1)

Here w(rrr,s) is the mean potential felt by the sth segment in the mean field approximation. The

initial condition is q(rrr,0) = 1, as the chain can start anywhere.

There is a corresponding backward propagator q†(rrr,s), being the integrated partition function

beginning at the end of the chain (again at any point) and reaching the point rrr in Ts− s steps. This

satisfies a similar diffusion equation with the initial condition q†(rrr,Ts) = 1. The total partition

function can be constructed from the forward and backward propagators:

Z =
∫

V
q(rrr,s)q†(rrr,s)drrr =

∫
V

q(rrr,Ts)drrr
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Here the second equality is true because the integral is independent of the step s allowing us to use

the initial condition on q†. Given this partition function, the polymer density contribution φs of

each step along the chain is obtained from:

φs =
(

Ts

N
υ

)
q(rrr,s)q†(rrr,s)

Z
(2)

Here υ = 4
3πb3 is the monomer volume. From this the total densities φA of species A monomers

and φB of species B monomers can be obtained by summing over all step density contributions to

the appropriate species.

The free energy of a particular polymer conformation contains several contributions. The poly-

mer configurational entropy portion of the free energy comes from the partition function Z above.

The other contributions are (units of kBT are adopted throughout):

Polymer-solvent interaction energy, described by the Flory interaction parameter χ:20

FPS|site = χ(φA +φB)(1−φA−φB)

Polymer-polymer interaction energy, described by the interaction parameter χAB:

FAB|site = χABφAφB

Translational entropy of the solvent given by:8

FS|site = (1−φA−φB) log(1−φA−φB)

The mean field w(rrr,s) can be obtained by minimizing these free energy terms with respect to the

polymer densities φA and φB. Carrying out this minimization, if s is in an A portion of the chain
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then

w(rrr,s) = wA(rrr) =χ(1−2φA−2φB)

+ χABφB− log(1−φA−φB)

Similarly for s in a B portion of the chain:

w(rrr,s) = wB(rrr) =χ(1−2φA−2φB)

+ χABφA− log(1−φA−φB)

These mean field formulas are used in the diffusion equation (Eq. (1)) to evaluate the propagators.

Numerical Implementation

The SCFT simulation process involves iteratively performing the following steps:

1. Start with random initial density fields φA and φB

2. Calculate the mean potentials wA and wB generated by these density fields

3. Calculate the forward and backward propagators along the polymer chain given the mean

potentials using the propagator equation (Eq. (1))

4. Find new density fields using (Eq. (2))

5. Use these new density fields in step 2

We use a 3D lattice box of size 51× 51× 51 units. The polymer densities φA and φB are

initialized as random normalized fields within a sphere of radius two thirds of the half lattice box

side length (25), centered in the lattice box. We choose the monomer size b such that the total

polymer volume (υN) is an 80th of the box volume as this was found to be optimal for minimizing

finite lattice size effects and allowing efficient computation.
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The most computationally difficult step is solving the propagator equation (step 3). We use an

approximate analytic solution to this equation in terms of an integral (see supplementary material:

Appendix 2 for derivation10):

q(rrr,s+δ s) = γ exp
(

δ s
b2

6
∇

2
)

q(rrr,s)

with γ = exp
(
−δ sexp

(
δ s
2

b2

6 ∇2
)

w(rrr)
)

. The exponential is calculated through:

exp
(

δ s
b2

6
∇

2
)

q(rrr,s) =(
3

2πδ sb2

)3/2 ∫
exp
(
−3|rrr− rrr ′|2

2b2δ s

)
q(rrr ′,s)drrr ′ (3)

And similarly for the exponential in the coefficient γ with δ s→ δ s
2 and q(rrr ′,s)→ w(rrr)

The integral (Eq. (3)) above is computationally time-consuming to solve due to the sum over

the entire lattice for each lattice point. We use a randomized integration method to speed up the

calculation. Clearly because of the exponential, only points rrr′ within a certain distance Rmax of rrr

provide a significant contribution to the integral. For each integer radius within Rmax, two random

points are chosen and appropriately averaged to approximate the entire integral contribution at this

radius. Hence for each radius less than Rmax, only 2 points are added rather than ∝ R2, significantly

boosting the speed of the calculation. The propagators are re-normalized after each integration to

prevent large values developing.

The forward and backward propagators q and q† are functions of position and monomer step

along the chain. We use 500 total steps along the chain. The number of monomers per step, or step

size ds, is not constant along the chain. We use a smaller step size inside the smaller A blocks as

this is required to converge to a solution efficiently.

With most SCFT simulations, the entire propagator is solved in one go, and then the entire

density field is updated. It was found that for single chains, the simulation was more stable if after

each propagator step along the chain, the corresponding portion of the density field was updated
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immediately. The process involves solving the propagator for step s (using the value from step

s− 1) and step Ts− s (using the value from step Ts− s + 1) by performing the integral (Eq. (3)).

The density contributions φs and φTs−s and the full densities φA and φB are then updated. The mean

fields wA and wB are recalculated and the next steps s+1 and Ts−s−1 are solved. The updating of

the density contribution φs involves using both the forward and backward propagator at this step.

In some cases one of these must be taken from the previous iteration, since it has not yet been

calculated for the current iteration. This somewhat slowed the evolution of the density fields, but

was advantageous as it improved the stability of the simulation.

The simulations were only stable for a limited range of the parameter space. We used several

additional methods to improve the stability. These included a stabilizing term in the mean potential

proportional to the change in the mean potential from the previous step. This term opposed rapid

changes in the mean potential slowing the evolution and preventing large gradients from develop-

ing. This improved the stability significantly but was small enough to have negligible effect on the

conformation (with a maximum over the lattice of less than 1% of all other mean field terms at

equilibrium21).

We included a free energy calculation in the calculation to provide a quantitative measure of the

stability of any given run. For stable runs the free energy plots simply described an almost mono-

tonic decrease to the final equilibrium state. Any deviation from this trend indicated instabilities.

The free energy calculation was also used to eliminate semi-stable conformations and differentiate

between different conformations arising from the same initial polymer parameters.

For most polymer configurational parameters, 25 iterations were sufficient to reach a stable

polymer conformation. This stability was checked by running some simulations for 40 or more

iterations.21 Depending on the polymer configurational parameters, there was no significant change

in the conformation after around 20 iterations. We judged conformations that were not stable (not

sufficiently collapsed) after 20 iterations as invalid.

Figure 1 shows some initial valid conformations produced by the simulations for asymmetric

copolymers. Clearly the general conformation formed is that of the smaller species A (grey) sur-
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rounding the larger species B (yellow/mesh). The reason for this general trend is explained using

the theoretical model in the next section. Species A forms a different number of surface domains

depending on the polymer chain characteristics. In the next section we focus on a theoretical

prediction of the number of surface domains formed.

Lens Free Energy Model

In this section we develop a simple free energy model to describe the polymer system. We consider

two factors that contribute to the free energy of a particular block copolymer system; surface

tension interaction energies between the different components (A,B and solvent) and entropic chain

stretching. In a poor solvent, the interaction between the polymer and solvent causes the polymer

to collapse into a compact globule with some density φ . For a sufficiently poor solvent, this

interaction dominates and the globule formed is approximately spherical. This is reflected in the

simulation results (Figure 1). Making the assumption that the globule is spherical allows us to

ignore the polymer-solvent interaction and consider only the polymer-polymer surface tension and

the chain stretching terms in making a free energy scaling model.

As this is a poor solvent problem and the polymer is collapsed in a dense globule, it could be

expected that the contribution of entropic chain stretching is negligible. However, even in collapsed

globules, the chain can still be locally stretched. This occurs around the interior A-B interfaces in

the globules considered here. The junction points between the A and B blocks lie on these interior

interfaces, and similar to polymer brushes, there is an effective grafting density of chain segments

on the interface (see Figure 11). If this grafting density is high, then the chains must stretch away

from the interface as they would run into each other if they were to move sideways. This stretching

is only significant near the interface, but it can result in an entropy loss and significant stretching

free energy contribution that favors the formation of more interior A-B interface, countering the

surface tension. The overall collapse of the globule also means that there should be a significant

free energy contribution from entropic chain compression. This is not considered as it would overly
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complicate an otherwise simple model that appears to work well without it. The chain compression

contribution is mostly constant for a given overall globule size and varies only slightly with respect

to the number of surface domains. Its variation would favor the formation of fewer, larger surface

domains and therefore acts in a similar way to the surface tension contribution.

Surface tension

The polymer globule density φ can be calculated by assuming a spherical homopolymer of density

φ . If φ at a particular site on a lattice is equal to 1 then the volume associated with that point is set

to be a monomer volume υ = 4
3πb3. If the polymer contains N monomers and forms a sphere of

radius R, then since φ is the volume fraction of polymer, by volume conservation:

4
3

πR3
φ = υN =⇒ R3 =

b3N
φ

(4)

Hence the number of lattice sites taken up by the polymer is given by:

sites =
4
3πR3

υ
=

N
φ

And the free energy is (from the SCFT section):

F =
(

χφ(1−φ)+(1−φ) log(1−φ)
)N

φ

= χ(1−φ)N +(
1
φ
−1) log(1−φ)N

Minimizing w.r.t φ and making a linear approximation between χ = 0.6 and χ = 0.8 gives the

approximate density of polymer within the sphere:

φ = 1.4(χ−0.42) (5)

We consider highly asymmetric block copolymers, where the block size ratio R = NA
NB

is small.
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Figure 2: (a) The polymer conformations are modeled as containing k species A surface
lenses/domains of radius x. (b) The species A half blocks simply stretch linearly into cylinders
of equal heights in the model. (c) The species B half blocks are modeled as stretching into expand-
ing cones.

The simulations predict that the large species B becomes centralized and surrounded by various

surface domains of the smaller species A as shown in Figure 1. We model this type of conformation

as containing k lens-shaped surface domains of radius x (Figure 2(a)). The lenses have the same

curvature on either side, so it is easy to calculate volumes and surface areas.

The A-B surface tension free energy term can be calculated given the polymer-polymer inter-

action strength χAB and the A-B interaction surface area (see Appendix 1):

FAB =
3

2
√

6
χ

1/2
AB kφ

(
1−
√

1− x2

R2

)
R2

b2 (6)

Stretching

The structure of the polymer chain inside a globule is in general very complicated. The exact

trajectories followed by the chains can only be obtained by simulation and any analytic model

must by its nature be very approximate. For our system, we take a simplified view where each

block inside the polymer globule is treated as stretching in its own section of volume - a cone or a

cylinder. This simplification of the stretching energy is expected to predict the general trend in the

change of the free energy with respect to the various parameters. The exact value of the stretching

free energy term is thus only approximate and we make the assumption that it is accurate up to a

pre-multiplying constant C. Thus the total free energy is FT = FAB +CFS, where the parameter C
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is determined by comparing the model to the results of the SCFT simulations.

The stretching free energy of each species is treated separately. We model the stretching of the

larger species B as linear stretching into expanding cones (Figure 2(c)). The cones’ base and top

are flat, and the base area is set by dividing up the surface area of the lens into equal portions. Each

half B block is approximated as stretching linearly away from its junction point on the lens surface

into the expanding cone shaped volume. This gives a total species B stretching free energy of (see

Appendix 1):

FSB =
8b4NBR4

9hφ 2y4

(
R−3− (R+h)−3) (7)

where the height (h) and base radius (y) of the cones are given by:

h = R

((
4b3NB

nφy2R
+1
)1/3

−1

)
(8)

y = R

√√√√2k
n

(
1−
√

1− x2

R2

)
(9)

The chain stretching of species A within the lenses is modeled as stretching into cylinders of

equal heights (Figure 2(b)). Since the polymer chain is highly asymmetric, the species A stretching

is less important than the species B stretching. The total species A stretching free energy is (see

Appendix 1):

FSA =
8b4NA

3φ 2y4 (10)

Adding (Eq. (7)) and (Eq. (10)) gives the total stretching free energy FS of the lens model for a

particular lens number k and lens size x. These are related by volume conservation:

NA

kN
= 1−

√
1− x2

R2

(
1+

x2

2R2

)
(11)

Minimizing the total free energy FT = FAB +CFS with respect to k gives a prediction of the

physically expected number of lenses or A surface domains. This prediction can be compared to

the results of the simulations.
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Parameter Trends

The minimum in the total free energy of the lens model arises from the opposite trends of the

stretching and the surface tension free energy terms. To minimize surface tension free energy, the

system favors a fewer number of lenses k, as this minimizes the total A-B surface contact area. The

stretching free energy term favors more lenses, as the block junction points, located on the A-B

interfaces, have a larger area to spread over.

The opposite trends of the two free energy contributions in the lens model allow simple expla-

nations for the change in the number of surface domains with the various polymer parameters in

the real system:

As the polymer-polymer interaction strength χAB increases, the surface tension free energy term

will become more important. The system trends towards less surface domains, as this minimizes

A-B surface contact area.

Polymers with higher total number of blocks n, tend to form more surface domains as the length

of each half block is shorter, meaning its stretching becomes more significant. The total number of

blocks n also imposes a maximum of n
2 on the total number of surface domains that can possibly

be formed.

The more highly asymmetric polymers with smaller block size ratios R, form globules with

more surface domains. This is because polymers containing less total A monomers have less A-B

interface area, making the surface tension term less important. They also have shorter A species

blocks making the stretching within these blocks more significant.

The trends with the final two parameters, total number of monomers N and polymer-solvent

interaction strength χ are less intuitive. They can be investigated by using a series of scaling

approximations on the lens model free energy equations. Eliminating constants and parameters

that don’t depend on χ and N, and noting that:

y ∝ R, h ∝ R, NA ∝ N, NB ∝ N and R ∝

(
N
φ

)1/3

The stretching and surface tension contributions to the free energy become (equations (Eq. (6)),

14



(Eq. (7)) and (Eq. (10))):

FAB ∝ kφ

(
1−
√

1− x2

R2

)
R2 ≈ φR2

∝ N2/3
φ

1/3

FSA +FSB ∝
N

φ 2R4 +
N

Rφ 2

(
R−3− (R+h)−3)

≈ 2N
φ 2R4 ∝

1
N1/3φ 2/3

From these relations, it can be seen that as N increases, the surface tension increases and the

stretching correspondingly decreases. The number of A domains then decreases with increasing

N, as the surface tension term begins to dominate.

As χ increases the polymer density φ increases (Eq. (5)). The surface tension free energy then

increases, because there is a higher density of monomers near the A-B interaction surface. The

number of A domains decreases with increasing χ , as the surface tension dominates.

The lens model has provided predictions of how the number of surface domains formed in the

collapsed globule depends on each of the five parameters N,n,χAB,χ and R. In the Results and

Analysis section, the SCFT simulations are shown to reproduce these trends for the majority of

cases.

Surface vs. interior domains

The formation of surface A domains and not interior A domains can be understood from the free

energy terms in the lens model. The parameter C multiplying the stretching free energy terms

was set as ≈ 2 when comparing to the simulations (see next section). Despite this doubling of the

value of the stretching terms, the surface tension free energy term was in general larger than the

stretching terms at equilibrium. The connected nature of the polymer is therefore less important.

The formation of surface domains can be understood as the tendency for a small liquid ball within

a significantly larger one to move to the inner surface of the larger ball. The smaller species will

15



form surface domains as this minimizes the species A-species B surface contact effectively for

free, compared to a globule containing interior A domains.21

Results and Analysis

Figure 3: SCFT simulations showing the effect of a decreasing block size ratio R. The parameters
N = 6000, n = 16, χ = 0.65 and χAB = 0.3 are constant while the block size ratio is (a) R = 0.55,
(b) R = 0.5, (c) R = 0.4 and (d) R = 0.35. The number of surface domains k increases as the
polymers become more asymmetric, with (a) k = 3, (b) k = 4, (c) k = 5 and (d) k = 6. This trend
reflects the trend predicted by the lens model, where the number of surface domains would increase
because a more asymmetric polymer has less A-B interface area and the stretching energy becomes
more important.

Figure 3 and Figure 4 show polymer conformations produced by the SCFT simulations con-

taining a range of different numbers of species A surface domains. The figures represents the

change in the globule structure while maintaining all parameters constant except the block size

ratio R and the polymer-solvent interaction strength χ respectively. The globule structure trends

displayed in these figures reflect the trends predicted by the lens model and shown in the scaling

analysis in the Model section.

Figure 5 and Figure 6 show two-dimensional phase diagram slices of the five-dimensional

16



Figure 4: SCFT simulations showing the effect of changing the polymer-solvent interaction
strength χ . The parameters N = 5520, n = 12, R = 0.6 and χAB = 0.25 are constant while the
polymer-solvent interaction strength is (a) χ = 0.8, (b) χ = 0.75, (c) χ = 0.65 and (d) χ = 0.6.
The number of surface domains k increases as χ decreases, with (a) k = 1, (b) k = 2, (c) k = 3 and
(d) k = 4. This trend reflects the trend predicted by the scaling analysis of the lens model equa-
tions above, where the number of surface domains would decrease with increasing polymer-solvent
interaction strength χ .
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parameter space. The dotted lines separate the diagrams into model predicted regions of constant

surface domain number and the SCFT simulation results in the slices are included. Figure 5 shows

the globule structure as a function of the total number of monomers N and total block number n.

For this slice the agreement between model and simulations is good. It is noteworthy in this phase

diagram and in general that the number of surface domains in a given conformation rarely reached

the maximum of n
2 . This is likely because the simulations had difficulty collapsing conformations

with a small number of monomers in a particular surface domain. The model prediction indicates

that to reach the maximum of n
2 surface domains the total number of monomers N must be small

(e.g. less than N = 3000 to get six domains from an n = 12 polymer), so the tendency towards

collapse of the overall globule is low and the simulations cannot collapse efficiently in a reasonable

number of iterations.

Figure 5: Phase diagram showing the number of surface domains as a function of the number of
monomers N and the total block number n (only even n are considered). The parameters χ = 0.65,
χAB = 0.15 and R = 0.4 are constant. The dotted lines split the diagram into model predicted
regions of constant surface domain number (indicated inside the n axis). The SCFT simulation
points contained in this slice are also included, and in this case the agreement between model and
simulations is good.

Figure 6 shows the globule structure as a function of χAB and the block size ratio R. The

trend towards more surface domains at lower block size ratios is strong and appears to be modeled

well. The SCFT results trend with χAB appears opposite to that expected from the model at high

block size ratios. This could be because of semi-stable SCFT results, but is most likely because
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the model is not good in this region of the parameter space. As discussed below, at high block size

ratios long ring conformations appear that are not described well by the lens model.

The simulations done cover a large area of the five-dimensional parameter space and therefore

any two-dimensional slice contains only a small number of data points. This is in some part

because for a given set of three parameters, the range of the remaining two parameters such that

the simulations would converge was often small. This can be seen in Figure 6 where simulations

were attempted for a range of χAB values, but at the low block size ratios, only a couple of χAB

values worked. For these small ranges of parameters, semi-stable SCFT conformations can have a

significant effect on the results as there were only several simulations done in these regions. The

study performed was quite general and information on specific regions of phase space is not as

thorough as could be obtained with a more focused future study.

Figure 6: Phase diagram showing the number of surface domains as a function of the polymer-
polymer interaction strength χAB and the block size ratio R. The parameters N = 5520, n = 12
and χ = 0.7 are constant. The dotted lines split the diagram into regions corresponding to the model
predicted regions of constant surface domain number. The SCFT simulation points contained in
this slice are also included, and the agreement between model and simulations is good for the lower
block size ratios.

Model-simulation comparison

Figure 7 plots the number of A domains observed in the simulations (simulation value) on the

x-axis against the number of A domains predicted by the lens model for the same polymer chain
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Figure 7: Number of surface A domains shown in the simulations versus that predicted by the lens
model for the same polymer chain parameters. The size of the data points is proportional to the
number of simulations/polymer configurations lying on that point. The line shows the mode at
each simulation value. All valid simulation data is included. Fitting constant C = 2.2. The large
spread is due mainly to conformations containing elongated A domains that are not described well
by the lens model.
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configuration. The size of the data point indicates the number of individual simulation results or

polymer chain configurations lying on that point.

Clearly the relationship is not one-to-one and there is a large spread in the model predicted

values for each simulation value. This spread is most pronounced for the simulation value of 1

A domain, where in many cases the model predicts more A domains than seen in the simulations.

Many of the simulation results do not look like a series of lenses. Instead a range of contorted rings

and sausage like shapes are seen, as in Figure 8. The lens model does not describe these kinds of

conformations well.

Figure 8: Conformations containing elongated domains not similar to the lens model. Polymer
chains forming such conformations are not described well by the lens model.

The majority of conformations containing these elongated domains are formed from relatively

symmetric block copolymers with block size ratios greater than R ≈ 0.45. An example of this

is seen in Figure 6. This suggests that the lens model may describe more asymmetric block

copolymers better, because less species A monomers results in smaller A surface domains and

less elongated domains. Eliminating all conformations resulting from polymers with block size

ratios greater than R = 0.4 gives the data set shown in Figure 9.

The correspondence between the model and the simulations is now better. In particular, most

of the data points with a simulation value of 1 A domain and a model prediction of more than

2 A domains have been removed. Some outliers from the higher simulation values have also

been removed by restricting to highly asymmetric polymer chains. The lens model would split

the elongated domains contained in these conformations into two or more sections, resulting in a

higher A domain number prediction.

The mode of the results now describes a one-to-one relationship for the conformations with
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Figure 9: Number of surface A domains shown in the simulations versus that predicted by the
lens model for the same polymer chain parameters. The size of the data points is proportional to
the number of simulations/polymer configurations lying on that point. The line shows the mode
at each simulation value. Only conformations resulting from polymer chains with R ≤ 0.4 are
included. Fitting constant C = 2.2. The spread is now less than in Figure 7, especially for the
simulation value of 1 A domain.
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smaller numbers of A surface domains. The fit is not as good for higher surface domain numbers,

possibly because the number of data points here is minimal. This is a good fit considering the

simplicity of our model and the complexity of the polymer system. The higher outliers still present

in the data, above the mode line, again appear to be due to conformations with elongated domains

which are not described well by the lens model. Many of the lower outliers, below the mode line,

were found to be unphysical conformations, as discussed in the next section.

Result validity

Several unphysical conformations, given the polymer chain configuration, were found to be pro-

duced by the SCFT simulations. An example is conformation (a) in Figure 10. The polymer chain

forming this conformation has a total of six blocks meaning three species A blocks. Hence it

should not be possible for the conformation to have two species A surface domains of equal size.

Other examples of unphysical conformations are the 4-equal-ball and 6-equal-ball conformations

in Figure 10.

Figure 10: (a): A 3-stack conformation N = 1890, n = 6, R = 0.4, χ = 0.7, χAB = 0.25 (surface
density = 0.15). The two grey A species domains have the same size. This should not be possible
since there are only 3 A blocks. (b) An unphysical 4-equal-ball conformation resulting from a 12
block polymer with only 6 A blocks. (c) An unphysical 6-equal-ball conformation resulting from
a 18 block polymer with only 9 A blocks

The existence of these unphysical conformations is due to the statistical nature of the SCFT

simulations. Abstractly, we can think of the simulation working by propagating every possible

polymer chain starting at every possible point through space and giving each possible chain state

a weighting according to the mean potential. A chain state that has an A block in a B-rich density

region will be given a small weighting. A polymer chain state with the A and B blocks in the
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correct density regions will be given a large weighting. The overall polymer conformation is then

obtained by doing a weighted average over all the chain states, given their particular weighting

factor. The outputted conformations are therefore averages of many chain arrangements. The 3-

stack conformation in ??(a) could be due to the super-position of polymer chain states having zero,

one, two or three blocks in the upper ball. This was confirmed by outputting the density field of

each individual A block, which were split into disjoint sections covering each surface A domain.

This statistical problem where unphysical conformations are produced is fundamental to the

SCFT simulation method, and throws the results into some doubt. Eliminating conformations

which are found to be unphysical gives a better simulation-model fit, but is not justified as the

remaining conformations may suffer from the same problem. This issue may exist in previous work

done using SCFT; on polymer melts for example. It may not have been observed before because

the location of individual blocks or full polymer chains is unimportant for the overall conformation

of a polymer melt. However, this problem may have an effect on the results if, for example, the

polymer chains in the melt are not all identical. In this case the location of individual chains is

important and as the SCFT method may not correctly locate individual chains, instead creating

an overall average, the conformations produced may not be entirely accurate. More research is

required to investigate the effects of this problem fully, but clearly more careful checks should be

done in the future on the results obtained from SCFT simulations.

Several simulation alterations were tried in an attempt to prevent the formation of these unphys-

ical conformations. An artificial hard sphere term was added to the mean potential surrounding the

center of mass of each species A block that strongly discouraged any separation of the block into

disjoint sections. This was an impractical solution as the radius of the sphere was very difficult

to choose correctly to prevent artificial influence on the final conformation. Another alteration

attempted was to impose a small artificial repulsion between the different species A blocks in the

form of an interaction parameter χbl . Again, this was impractical as the value of χbl was very

difficult to choose correctly to prevent a large artificial influence while still solving the problem.

24



Conclusions

We have investigated the properties of single asymmetric block copolymer chains in poor solvents

where the blocks of one species (A) are significantly shorter than the blocks of the other species (B).

In general, the self consistent field theory simulations predicted that the polymer chain collapses

into an approximately spherical globule with species A forming a number of surface domains

surrounding a species B core.

We identified a problem due to the statistical aspect of the method where the results produced

were sometimes unphysical, given the structure of the polymer chain. This problem is possibly

existent in SCFT simulations performed before and may render some results invalid. More research

is required to investigate this effect and its impact on SCFT results.

We developed a simple free energy scaling model to explain the simulation results and predict

the number of surface A domains formed for different chain parameters. The model and simulation

predictions of the number of surface domains agreed well for many cases, and best for highly

asymmetric polymer chains with R ≤ 0.4. The mode of the model-simulation results described an

approximate one-to-one relationship. This indicates that our model can predict the conformations

formed by highly asymmetric single copolymer chains in nonselective poor solvents reasonably

well.

The investigation performed in this work shows the potential of these simple single chain block

copolymers to form patchy colloid like particles, due to their tendency to form small A domains on

the surface of a B sphere. The A domains constitute the patches on the colloids surface, and their

number can be determined from the initial polymer configuration and therefore controlled using

the free energy model presented in this paper.
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Appendix 1: Lens Model Calculations

Surface tension

The surface area and volume of each lens is found by using the solid angle of the cone Ω =

2π(1− cosθ). The surface area of one side of the lens is given by:

A 1
2 Lens = 4πR2 Ω

4π

= 2πR2

(
1−
√

1− x2

R2

)

Substituting into the surface tension free energy equation derived by Helfand and Tagami22 and

multiplying by the number of lenses k gives (Eq. (6)).

Species B stretching

The free energy resulting from stretching an ideal chain into a cone-shaped volume can be evalu-

ated by generalizing the ideal chain stretching free energy (units of kbT ):20

F(R) =
3
2

R2

R2
0

(12)

The cone is split into discs of infinitesimal height dz and radius Rc(N), each containing dN′

monomers where N′ is the monomer number starting at the base of the cone. By conservation

of density:

φπ[Rc(N′)]2dz =
4
3

πb3dN′

=⇒ dz =
4b3dN′

3φ [Rc(N′)]2
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The ideal stretching equation applies in each infinitesimal disc:

dFS =
3dz2

2dN′b2

=
8b4

3φ 2[Rc(N′)]4
dN′

Hence integrating over the whole half B block of total monomers N1
2 B:

FS cone =
8b4

3φ 2

∫ N1
2 B

0
[Rc(N′)]−4dN′ (13)

This gives the stretching free energy penalty for stretching into a cone.

Figure 11: Species B stretching model

For our B species model, The expansion rate of the cone is described by the function r(z) where

z is the height above the lens surface along the axis of the cone. The initial radius r(0) = y is set by

the requirement that the half lens surface area be taken up by the species B stretching cone bases.

Given that the polymer has n total blocks, the total junction points is also n and the junction points

per lens is n
k . Hence:

Acone base =
A 1

2 Lens

jn. points

=⇒ πy2 =
2πR2

(
1−
√

1− x2

R2

)
n/k

This gives an equation for the base radius y (Eq. (9)).
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The function r(z) is given by:

r(z) = (R+ z)sinθ = (R+ z)
y
R

The height h is set by the requirement that the volume of all the stretching cones must be equal to

the volume of species B polymer. The volume of one stretching cone is given by:

V1 cone =
1
3

π(r(h))2(h+R)− 1
3

πy2R

=
1
3

πy2
(

(R+h)3

R2 −R
)

Given that there are n half blocks of species B and there are NB total species B monomers:

nφV1 cone =
4
3

πb3NB

=⇒ (R+h)3

R2 −R =
4b3NB

nφy2

This gives an equation for the cone height h (Eq. (8)).

Now to use the cone stretching equation (Eq. (13)), Rc(N′) is needed. Given that each species B

half block contains NB
n monomers and assuming a linear increase of N′ with z gives z(N′) = hn

NB
N′.

So:

Rc(N′) = r(z(N′)) = (R+
hn
NB

N′)
y
R

Hence by (Eq. (13)) the stretching free energy (in units of kT ) for each half block in species B is

given by the integral:

FS(
1
2

B block) =
8b4

3φ 2

∫ NB
n

0

(
Rc(N′)

)−4 dN′

=
8b4NBR4

9hnφ 2y4

(
R−3− (R+h)−3)

Giving the total B stretching energy (Eq. (7)).

28



Species A stretching

The base radius of each cylinder is simply given by the base radius of the corresponding species B

stretching cone y. If the height of each cylinder is H then by conservation of volume in species A:

nφV1
2 block cylinder =

4
3

πb3NA

=⇒ H =
4b3NA

3nφy2

Hence by the ideal stretching equation (Eq. (12)) the stretching free energy in each cylinder is:

FS(
1
2

block cylinder) =
3H2

2NCb2

=
8b4NA

3nφ 2y4

Giving the total A stretching energy (Eq. (10)).

Relating k to x

The volume of one lens is:

VLens = 2(Vcap + cone−Vcone)

=
4
3

πR3

(
1−
√

1− x2

R2

(
1+

x2

2R2

))

Given that species A consists of NA monomers at a constant volume fraction φ :

kφVLens =
4
3

πb3NA

=⇒ kφR3

b3NA
=

(
1−
√

1− x2

R2

(
1+

x2

2R2

))−1
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Using the volume fraction equation (Eq. (4)) to eliminate φ , an equation that relates the number of

lenses k to the size of each lens x is obtained (Eq. (11)).
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Graphical TOC Entry

Title: Single Chain Asymmetric Block Copolymers in Poor Solvents - Candidates
for Patchy Colloids
Authors: Ryan M. Holmes and David R. M. Williams

Single chain block copolymers can collapse to form a variety of conformations
when placed in a poor solvent. These are some example conformations produced
using self consistent field theory simulations. Due to their tendency to form balls
with a varying number of surface patches, highly asymmetric single chain block
copolymers have the potential to be used as patchy colloid-like particles. 17

32


