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Abstract –We show that weakly stretched single chain multi-block copolymers in poor solvents
experience sudden changes in the number of domains when the end-to-end elongation distance of
the chain is changed. The simplest symmetric transition of this type, occurring for a four-block
copolymer, is analyzed using self consistent field theory (SCFT) simulations and a simple free
energy model. The very simple model provides a surprisingly good description of the critical
elongation at which the transition occurs as a function of the polymer characteristics.

Introduction. – The stretching of polymers is of fun-
damental importance in many problems, from the elastic
properties of rubber [1] to the behavior of polymeric fluid
flows [2]. The entropy properties of polymer chains is what
sets them apart from simple liquids and provides them
with such rich behavior. The entropic term in the free en-
ergy combined with the simpler energetic interaction free
energies allows us to describe how a polymer chain deforms
under exterior influences. Recent developments in exper-
imental techniques such as atomic force microscope ex-
periments and optical tweezers have allowed tests of these
theoretical descriptions of, for example, the behavior of
a single polymer chain under an extensional force [3, 4].
Many such experiments focus on the stretching of various
homopolymers, being the simplest case and one for which
we have a reasonably complete theoretical description.

The simplest case possible, the stretching of an ideal
chain [5], was treated long ago and results in the simple
equation for the free energy of an ideal chain of unper-
turbed length R0 stretched a distance L; F = kBT

3L2

2R2
0
.

From this, equations governing the behavior of ideal chains
when confined or elongated in various geometries can be
derived. The extension of these descriptions to good sol-
vents has been covered extensively and understanding is
now quite good [6].

Single homopolymer chains in poor solvents are more
interesting in many ways than homopolymers in good or
theta solvents, as they undergo some interesting discon-
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tinuous transitions. The pioneering work was carried out
by Halperin and Zhulina [7] who showed that as extension
of a chain in a poor solvent increases, the globule deforms
and then undergos a sudden unwinding transition, forming
a ball and chain type conformation. This is a polymeric
form of the Rayleigh instability of a liquid crystal. Later
work [8] went on to show that at higher extensions there
was a further unraveling transition; from a finite-sized-ball
and chain to a simple extended chain. These studies and
others have provided a good understanding of the behavior
of homopolymers in poor solvents.

Most polymers are however not homopolymers and con-
sist of more than one kind of monomer. With the in-
troduction of a second species of monomer to produce a
copolymer, our understanding becomes much more lim-
ited. Most studies have focused on strong stretching of
di-block and multi-block copolymers in selective solvents,
where one species is hydrophobic and one is hydrophilic
[9,10]. Extensive experimental and some theoretical stud-
ies have also been done on the much more complicated
case of proteins and DNA [11–13]. However, a blanket
understanding of block copolymer stretching does not ex-
ist, and there still remain many aspects and parameter
ranges yet to be investigated. This paper focuses on one
such previously unexplored region of poor solvent block
copolymer single chain stretching in the regime of weak
extension, so that no ‘ball and chain’ Rayleigh instability
occurs. For the homopolymer case this was studied early
on [7] but the result is somewhat boring. All one gets is
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Fig. 1: SCFT simulations of a N = 2000, χAB = 0.25, χ = 0.7
four block copolymer stretched at different stretching distances
D = 5, 13, 15 and 20. A clear transition occurs when the
stretching distance is such that the formation of four domains
is favored over the formation of two domains. [15]

deformation from a sphere to an ellipsoid. In marked con-
trast we shall show that for a block copolymer the physics
is in fact interesting.

We investigate the properties of weakly stretched four
block copolymers in poor solvents, where there are two
blocks of each species (A and B) and all blocks contain
the same number of monomers N

4 . If the polymer is un-
stretched, then it forms a collapsed globule with two phase
separated domains, a species A domain and a species B
domain. The domains are approximately hemispheres, but
are deformed depending on the relative strengths of the
polymer-polymer interaction and the polymer-solvent in-
teraction [14] (controlled by the Flory interaction parame-
ters χAB and χ respectively). As the polymer is stretched
by grabbing both ends, it is forced to adopt a more elon-
gated conformation as the end blocks are pulled away from
the center of the conformation. At a particular critical
stretching distance dt (in units of the kuhn length b of the
polymer), the loss in entropy means it is no longer favor-
able for the blocks of the same species to remain together.
The blocks are pulled apart and each block forms its own
domain in a four domain conformation. A simulation of
this process is shown in fig. 1. This paper presents a brief
investigation of this transition and the dependence of the
critical elongation dt on the parameters N , χAB and χ.

We use a self consistent field theory (SCFT) simulation
method to obtain predictions of the polymer chain con-
formation with the ends of the chain set apart at varying
distances. For this dense system SCFT is significantly
faster than other methods such as Monte Carlo, allowing
a broader and more thorough investigation of the param-
eter space. SCFT has been used extensively for the study
of polymer melts [16, 17] and minimally for single chains
[14, 18] and single chain stretching [19]. The disadvan-
tage of SCFT is that it can only evaluate the equilibrium
conformation of the polymer. In a real experiment, there
would be significant hysteresis [8] (especially as the poly-
mers are only weakly stretched) when increasing the elon-

gation beyond dt or relaxing the elongation below dt.
We first give a brief overview of the SCFT simula-

tion method and its application to stretched single chains.
Then a simple free energy model is developed to predict
the critical elongation dt at which the transition from a
two-domain to a four-domain globule occurs. The results
of the simulations are then presented and analyzed along
with the model. Finally we conclude and summarize the
outcomes of this work and suggest further research direc-
tions.

Self Consistent Field Theory. – Self consistent
field theory simulations of copolymers involve describing
the polymer by density fields φA and φB on a lattice.
These density fields are iteratively updated using parti-
tion functions or propagators QF and QB that reproduce
the boltzmann distribution and return the connected poly-
meric nature to the density fields [20].

In this paper we consider a copolymer chain consist-
ing of four alternating blocks of species A and species B
monomers. Each block is of equal length containing N/4
monomers and the monomers have a Kuhn length of b. For
the SCFT simulations the chain is divided into Ts = 500
steps. Given that the chain begins at r0, the forward parti-
tion function is denoted QF (r, r0, s) and obeys a modified
diffusion equation [21,22]:

∂

∂s
QF (r, r0, s) =

b2

6
∇2

rQF (r, r0, s)− w(r, s)QF (r, r0, s)

Here w(r, s) is the mean potential felt by the sth segment
of the chain in the mean field approximation. The forward
partition function has an initial condition QF (r, r0, Ts) =
δ(r − r0). Given that the chain ends at the position
rTs , there is a corresponding backward partition function
QB(r, rTs , s). This satisfies a similar diffusion equation
with initial condition QB(r, rTs

, 0) = δ(r − rTs
). Multi-

plying the forward and backward partition functions and
integrating over the lattice gives the total partition func-
tion:

Z =
∫
V

QF (r, r0, s)QB(r, rTs
, s)dr

The polymer density contribution φs of each step along the
chain can be obtained from this total partition function:

φs(r) =
(
Ts
N
υ

)
QF (r, r0, s)QB(r, rTs , s)

Z

Here υ = 4
3πb

3 is the monomer volume. Summing over all
step density contributions gives the total densities φA and
φB of species A and B.

The free energy of a particular polymer conformation
contains contributions from the polymer configurational
entropy through the partition function Z above, from the
energetic interactions between species and from the trans-
lational entropy of the solvent. Adopting units of kBT ,
the energetic interaction energies are the polymer-solvent
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interaction energy, described by the Flory interaction pa-
rameter χ [5]:

FPS |site = χ(φA + φB)(1− φA − φB)

and the polymer-polymer interaction energy, described by
the interaction parameter χAB :

FAB |site = χABφAφB

The free energy contribution from the translational en-
tropy of the solvent is given by [23]:

FS |site = (1− φA − φB) log (1− φA − φB)

The mean potential w(r, s) used in the diffusion equation
is obtained by minimizing these free energy terms with
respect to the polymer densities φA and φB . Carrying out
this minimization gives for s in an A portion of the chain:

w(r, s) = wA(r) =χ(1− 2φA − 2φB)
+ χABφB − log(1− φA − φB)

A similar equation exists for s in a B portion of the chain.
The simulations are conducted on a three-dimensional

lattice box of size 51 × 51 × 51 units and we choose the
kuhn length b such that the total polymer volume υN is
an 80th of the box volume as this was found to be opti-
mal for minimizing finite lattice size effects and allowing
efficient computation. The SCFT simulation method in-
volves starting with initial random density fields φA and
φB and performing three steps iteratively on these fields.
Firstly, the mean potential w(r, s) is obtained by solving
the above equations. Then the modified diffusion equa-
tions are solved to obtain the partition functions QF and
QB [18]. These partition functions are then used to obtain
new density fields φA and φB to be used in the next it-
eration. After sufficient iteration (we ran each simulation
for 25 iterations), the density fields approach fixed fields
describing the predicted polymer conformation. More de-
tailed information on the implementation of SCFT used
here can be found in a previous paper [18].

We wish to consider stretched copolymer chains where
the ends of the chains are fixed a distance 2D from each
other (D is measured in lattice units, while d = D/b is
measured in kuhn lengths). This could be accomplished
simply by setting r0 = (0, 0,−D) and rTs = (0, 0, D).
However, the delta function initial conditions on the par-
tition functions create problems in the numerical calcula-
tions, so it is necessary to smooth out the initial condi-
tions over nearby lattice sites. This is accomplished by
initializing each partition function as a gaussian centered
around the appropriate point. The standard deviation of
the gaussian was chosen as around 1.5 lattice units, as
this optimized numerical performance while maintaining
the spread as small as possible. As the densities of each
monomer in SCFT simulations are spread over much of
their species’ respective domains, this spread in the loca-
tion of the end monomer does not introduce much uncer-
tainty in the stretching distance D. The centers of the

Fig. 2: Plots of the N -χAB and χAB-χ parameter spaces with
successful simulation sets locating a valid critical elongation
distance dt (open blue circles) and invalid simulation sets not
meeting convergence criteria (closed red circles).

gaussians are still located the correct distance apart. This
gaussian spread also allows the stretching distance to vary
in smaller steps than a lattice spacing. The centers of the
gaussians can be located in between grid points but sam-
pled only at the grid points, giving a non-integer stretching
distance D. This potentially allows measurements of the
critical elongation distance Dt to an uncertainty better
than the grid spacing.

Figure 1 shows a four block copolymer simulated us-
ing the SCFT method at a range of stretching distances.
In order to find the stretching distance Dt such that the
transition from two to four domains occurs, it is neces-
sary to conduct many simulations at different stretching
distances D. As each simulation is time consuming, an
algorithm using nine simulations for each parameter set
was developed to efficiently find Dt to a reasonable un-
certainty. The algorithm involved starting with a guess D
(obtained from the model described in the next section)
and an estimated interval in which this guess is accurate
(around ±5b). The interval was then halved on either side
depending on whether the conducted simulation was be-
low or above the transition. After the initial simulation,
two steps of halving were conducted and then simulations
were conducted on either side of the resulting midpoint
for three steps, with the interval increasing or decreas-
ing depending on whether the transition was captured in-
side the interval or not. Some of the stretching distances
D of these nine simulations would lie above the critical
elongation Dt, and some below. Dt was thus obtained
by taking the midpoint of the shortest four-domain result
and the longest two-domain result. However, due to the
random initial conditions in the simulations, sometimes
four-domain conformations would result at stretching dis-
tances shorter than some two-domain conformations. In
this case, all data lying within this overlap region was ap-
propriately averaged to obtain Dt. These overlaps were
always small if they occurred and the algorithm described
above located Dt to within ±b uncertainty in most cases
and within ±2.5b uncertainty (∼ 5% of the total stretching
distance) in all cases in which the simulations successfully
converged. The simulations contain none of the fluctua-
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tions present in real polymer systems and hence the uncer-
tainties above would likely be smaller than uncertainties
in the real system. Hysteresis in the real system would
also cause the critical elongation to be markedly different
to that presented here, although if the polymers were left
to equilibrate for long enough, this should not affect the
result.

For many extreme ranges of parameters, the simula-
tions would not converge successfully, giving an incor-
rect value for Dt. Therefore strict simulation criteria
were developed to identify and eliminate incorrect results.
Figure 2 shows plots of the the N -χAB and χAB-χ pa-
rameter spaces displaying simulation sets passing these
criteria with blue circles, and invalid results in red. If
χAB were too small, sufficient phase separation did not
occur in less than 25 iterations. A mixing parameter
M = 4

∫
φAφBdr/

∫
(φA + φB)2dr measured the degree

of phase separation and if more than one simulation in a
particular set of nine had M > 0.3 in the final iterations,
this set was judged as invalid (this occurs for many small
χAB sets in fig. 2). Similarly, if χ were too small then
the globule collapsed slowly; this was indicated by a small
standard deviation in the density fields and simulation sets
with more than two simulations having a standard devia-
tion of less than 0.038 in the final iterations were judged
as invalid. Alternatively, if χAB , χ or N were too large,
numerical errors developed and the simulation crashed.
Simulation sets where more than two simulations crashed
in less than 20 iterations were judged as invalid.

Free Energy Model. – A simple free energy model
can be derived to predict the critical elongation Dt for
4-block weakly stretched copolymers. We model the
stretched polymer as forming a cylinder of length 2D and
radius R. The cylinder is split into two or four sections,
corresponding to the two domain or four domain polymer
conformations on each side of the transition. As the outer
polymer-solvent surface area is the same for both two and
four section cylinders, we can ignore the polymer-solvent
surface tension free energy contribution, only considering
A-B surface tension and stretching.

We assume that the poor solvent interaction causes the
polymer to collapse into a globule with some constant vol-
ume fraction φ. Given a kuhn length of b and N total
monomers in the chain, the radius of the cylinder is deter-
mined by:

2DπR2φ =
4
3
πb3N =⇒ R2 =

2b3N
3Dφ

The surface tension free energy contribution (we adopt
units of kBT ) is simply proportional to the amount of A-
B contact area. The exact formula was derived by Helfand
and Tagami [24] and gives a total surface tension free en-
ergy as a function of the number of sections in the cylinder
S of:

FAB =
3

4
√

6
χ

1/2
ABφ(S − 1)

R2

b2
=
χ

1/2
AB(S − 1)bN

2
√

6D

For the entropic stretching free energy contribution, we
take a simplified view where each block stretches as for
an ideal chain within each cylinder section. As there are
four blocks, the four section case is simple, as each block
stretches linearly a distance D

2 . Using the ideal chain
stretching equation (units of kBT ) FS = 3L2

2Nb2 [5] gives
a four section stretching energy of:

FS4 =
6D2

Nb2

For the two section case, the two end blocks stretch
a distance D (half the cylinder length). The two middle
blocks have a more complicated structure, and we approxi-
mate their stretching by assuming each half block stretches
as if it was grafted to the A-B interface at the center of
the cylinder. The A-B interface area is πR2, and there
are three block junction points on this surface meaning
an area per junction point of πR2/3. Each half block
stretches in a small cylinder with this cross-sectional area
where the height of the small cylinder H is determined by
volume conservation given a polymer volume fraction φ;
H = b3N

2R2φ . Adding up the contribution of each block gives
a two section stretching energy of:

FS2 =
39D2

Nb2

The exact values of these stretching free energy terms
are only approximate and we make the assumption that
they are accurate up to a pre-multiplying constant C.
Thus the total free energy for comparison purposes is
FT = FAB + CFS , where the parameter C is determined
by comparing the model to the results of the SCFT sim-
ulations. Setting the free energies of the two and four
section cylinders equal gives the transition distance Dt.
Converting to distance units of b, the critical elongation
dt is:

dt = (33
√

6C)−1/3χ
1/6
ABN

2/3 (1)

Critical Elongation Analysis. – Figure 3 plots the
critical elongation distance dt obtained from the SCFT
simulations against eq. 1 from the cylinder model. The
fitting parameter C was chosen as 2.24, indicating that
the stretching energy was underestimated by a factor of
2. Despite the simplicity of the model, it appears to work
quite well as the data points lie close to the one-to-one
line, with a standard deviation from this line of 1.48 Kuhn
lengths. This is somewhat surprising given the simplicity
of the model and the approximations it makes.

The most important approximation is the assumption
that the outer surface area of the globule is the same for
the two and four domain conformations at the same D.
Figure 1 shows that the outer shape of the polymer in
fact changes significantly with the transition, and that the
polymer-solvent surface energy term that depends on χ,
should be important. The model ignores this term and
has no dependence on χ, as the polymer volume fraction
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Fig. 3: dt obtained from the SCFT simulations against eq. 1
from the cylinder model for the equivalent polymer parame-
ters N , χAB and χ. The fitting parameter C is 2.24. The
data describes an approximate one-to-one relationship, with a
standard deviation from the one-to-one line of 1.48b.

φ cancels out (φ depends on χ [18]). The lower plot in fig.
4 shows the dependence of the critical elongation distance
dt on χ for both the model (constant w.r.t. χ) and the
simulations. The simulations indicate that dt decreases
with χ. This is simply explained because χ increases the
density of the polymer, making the overall globule smaller
and the elongation more extreme in relation to the per-
pendicular globule width.

However, the polymer-solvent surface term becomes
more important as χ increases and therefore the two-
domain conformation, which appears more spherical with
a lower polymer-solvent surface area than the four-domain
conformation, is favored by this term. The trend of dt with
χ is therefore weaker than would be expected given a sim-
ple shrinking of the globule. The trend of dt with N and
χAB shown in the other plots in fig. 4 is stronger than
the trend with χ relative to the ranges of the parameters,
being one reason why the cylinder model, despite ignoring
the effect of χ, describes the system well. Several more
complicated models were developed that more correctly
described the exterior geometry of the polymer globule
and thus included the polymer-solvent energy term. De-
spite containing an additional fitting parameter control-
ling the strength of this additional term, these more com-
plicated models resulted in only minor improvements in
the spread of fig. 3, indicating that the simple cylinder
model captures the essential physics of the problem.

The top plot in fig. 4 shows the dependence of the
critical elongation distance dt on the total number of
monomers N in the chain. dt increases quickly with in-

Fig. 4: dt as a function of the number of monomers N
(top), polymer-polymer interaction strength χAB (middle) and
polymer-solvent interaction strength χ (bottom). The data
points are from the SCFT simulations and the lines show the
model prediction from eq. 1 with fitting parameter C = 2.24.

creasing N ; the globule gets larger and the elongation be-
comes less extreme in relation to the perpendicular glob-
ule width. The cylinder model appears to overestimate the
scaling exponent, predicting a slightly more rapid increase
of dt with N . In the model, the radius of the cylinder in-
creases as R ∼ N1/2 at constant D (for a poor solvent the
density is independent of N [23]). A more accurate model
of the two domain conformation, such as a double-cone
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or ellipse, would have a similar semi-minor axis R scal-
ing (as in all cases, the volume scales with R2). However,
the surface area of a double-cone or ellipse increases more
with R than the surface area of a cylinder. Therefore as
N increases, the polymer-solvent surface energy would in-
creasingly favor the four-domain conformation, which is
more like a cylinder, over the two-domain conformation.
As the model has a cylinder for the two-domain conforma-
tion, it overestimates the scaling exponent of dt with N ,
not capturing the polymer-solvent surface energy behav-
ior.

The middle plot in fig. 4 shows the dependence of the
critical elongation distance dt on the polymer-polymer in-
teraction strength χAB . dt increases with increasing χAB ;
the transition from two-domains to four-domains clearly
involves an increase in the A-B contact area, so as the A-
B interaction becomes more important the transition is
delayed to higher elongations. The trend of dt with χAB
appears to be modeled quite well, and the constant offsets
in this plot are due mainly to the inaccuracies in modeling
the trends with the other two parameters.

Conclusions. – This investigation of weakly
stretched single chain multi-block copolymers in poor
solvents has shown that these polymers can undergo in-
teresting transitions as the stretching distance increases.
A simple cylindrical free energy model of a four-block
copolymer was able to describe the transition that occurs
from a two domain conformation to a four domain
conformation. The critical elongation dt predicted by the
cylinder model related to the SCFT prediction with a
standard deviation of 1.48 Kuhn lengths, indicating the
simple model worked well. The model did not consider
the influence of the polymer-solvent interaction, but as
the system appeared to have only a small dependence on
χ, the model was still able to describe the system satis-
factorily. Both the model and simulations only consider
equilibrium conformations and in reality there would
be significant hysteresis when changing the stretching
distance around the critical elongation.

The small forces and free energy differences for weakly
stretched copolymers made an investigation of the force-
elongation curve difficult due to numerical inaccuracies in
the SCFT free energy calculation. If the accuracy of the
free energy calculation in the simulations was improved,
this would be an interesting topic for further research. An
investigation of higher order transitions of this type, in-
volving copolymers with more blocks and/or transitions
between domain numbers greater than four seems war-
ranted. The physics of strongly-stretched chains of this
kind also remains to be investigated.
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